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A B S T R AC T  

Electroencephalography (EEG) signals are routinely recorded in clinical settings for the diagnosis of 
epilepsy, that is, brain electrical disorders, by a neurologist. Nevertheless, both the reliability and safety 
of GB analysis of EEG parameters are not satisfactory. Therefore, identifying the effectiveness of EEG 
for diagnosis is a considerable challenge for hospitals. This study was conducted to improve the 
efficiency of detecting epileptic seizures in EEG signals by combining three methodologies: the double 
tree complex wavelet transform (DT-CWT), K means clustering, and the ChaCha20 encryption 
algorithm. EEG segments are initially partitioned into regular segments, each of which is further 
partitioned into smaller clusters by K-means. To analyse the EEG waves to extract frequency information 
and select six discriminable statistical features, these clusters are examined via the DT-CWT. After 
feature extraction, epileptic seizures are discerned on the basis of K-means, which can enable very 
accurate detection of the seizures. The final results are encrypted via the ChaCha20 standard to ensure 
patient data confidentiality at the send and receipt stages. The findings presented in this study show that 
the proposed approach has a good clustering accuracy of 99% to help doctors diagnose patients with 
epilepsy and prescribe the best treatment to cure patients to maintain privacy and prevent data from being 
seen by unauthorized persons with an overall accuracy of 96.3%. Through the improvement of the 
accuracy of neurological disease identification, this method opens up the possibility for further progress 

in the domain of EEG signal analysis. 

 

 
1. INTRODUCTION 

Epilepsy continues to be one of the most common brain diseases affecting millions of people, and rapid diagnosis is needed 

worldwide [1]. Seizure detection via EEG data is an important tool in clinical applications as it captures dynamic 

information of the brain [2–5]. Unfortunately, conventional approaches for the interpretation of EEGs face issues of 

interpatient variability, signal complexity and manual feature extraction, impeding the reproducibility of detection 

performance [6]. Research has also integrated of machine learning and deep learning models for more accurate 

classification and automatic seizure detection [7-12]. 

Although progress has been made in the detection of seizures, several challenges remain. Feature extraction methods such 

as wavelet-based analysis and spectral decomposition have computational efficiency problems [13-27]. Furthermore, 

advanced deep-learning techniques (CNNs, Bi-LSTM, and transformers) increase classification accuracy, but such 

techniques demand a large amount of EEG data and a considerable computational power for real-time applications [28-

39]. A further critical issue to overcome is related to data protection because EEGs are stored and transmitted through 

telehealth systems, which call for sophisticated encryption techniques [40-42]. 

In the last decade, subband based feature extraction and classification methods have used wavelet transforms, clustering 

and neural networks. ITD, DWT, PSR achieve good seizure classification performance but computational inefficiency 

[43-47]. In addition to deep learning feature fusion, the robustness was further enhanced but optimization was necessary 

for the real-time application [48]. The tunable Q-factor wavelet transform (TQWT) was on the other hand proposed for 
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the detection of seizures and it offered multiresolution analysis, however, at the expense of a heavy computational burden 

[49–55]. 

The proposed work presents an integrated framework that combines dual-tree complex wavelet transform (DT-CWT) for 

improved feature extraction, optimized K-means clustering for effective classification, and ChaCha20 encryption for 

securing the transport of the EEG input. Through multilevel signal decomposition, clustering enhancements, and 

lightweight cryptographic methodologies, the presented solution provides a novel, efficient and scalable solution to address 

the key problems of seizure detection. To overcome these difficulties, the following directions could be adopted in this 

paper: 

✓ The feature extraction process improved via dual-tree complex wavelet transform (DT-CWT) to increase the temporal 

and spectral resolution for the detection of epileptic seizures. 

✓ Classification accuracy elevation is achieved via advanced K-means clustering for robust and adaptive grouping of 

EEG features. 

✓ With the adoption of ChaCha20 encryption, which allows EEG signal processing efficiently and securely in real-time 

applications, data security and privacy protection can be enhanced. 

It proposes a detailed framework built on multiresolution wavelet transformation-based features, and improved clustering 

techniques as well as advanced cryptography, for the most commonly used application (medical diagnostics), which 

guarantees both accuracy, and efficiency as well as the application of security.  

2. RELATED WORKS 

The detection of epileptic seizures has evolved greatly, moving from classical feature extraction methods to machine 

learning and deep learning approaches. Vanabelle et al. [5] presented an extreme gradient boosting framework whose 

results significantly surpassed those of classical methods for the seizure classification problem. Similarly, Lafta et al. [6] 

proposed a multidisease recommendation model for telehealth; however, while it incorporates real-time EEG-based 

epilepsy seizure detection, scalability was the main issue. Similarly, Zeng et al. [7] studied different decomposition 

techniques for EEG signals with the use of the ITD, DWT and PSR, and NN to obtain higher detection accuracy. 

Malekzadeh et al. [8] used hand-crafted and deep features, which solved some issues related to feature instability, but there 

were some problems with real-time computational complexity. Deep learning methods have greatly improved the 

classification of seizures. Wang et al. [9] introduced 1D CNNs for seizure onset detection on long-term EEG recordings 

Current Limitations Their approach has been able to increase the reliability of detection, although it demands high levels 

of computational resources for large-scale analysis. 

Shoeibi et al. [12] proposed a hybrid of ANFIS classifiers, autoencoder, and fuzzy entropies that resulted in successful 

seizure detection. However, their approach encounters the high variability in EEG signals, causing the classification 

performance to be unstable across datasets. Lafta et al. [13] used time series clustering for heart disease and its clustering 

mechanism was not adaptable for EEG seizure classification which can only be used to detect neurological disorders.  

Wavelet transformation methods are commonly used in processing EEG signals. Zhen et al. [14] increased the accuracy 

of seizure detection via the Revised Tunable Q-Factor Wavelet Transform, but encountered difficulty in real-time EEG 

processing because of its high computational power. 

Ahmed et al. [15] used dual tree complex wavelet transform (DT-CWT) with machine learning; however, they developed 

a model for not seizures detectable but rather a schizophrenia classifier. 

 A few studies have investigated the classification of seizures via machine learning. Kavitha et al. [16] used the wavelet 

domain feature extraction and different classification methods, but worked poorly at generalizing over multiple sets of 

EEG data. Shukla et al. [17] exploited continuous wavelet transform and deep neural networks, which presented higher 

accuracy, but they were confronted with the problem of feature instability with the existence of signal artefacts. 

Deep learning techniques have significantly improved classification accuracy. 

Chashmi [18] applied nonlinear DT-CWT-based feature extraction integrated with deep learning, successfully enhancing 

seizure detection performance. However, their study did not fully address the computational complexity in real-time 

scenarios. Al-Salman et al. [19] investigated EEG waveform classification; but did not optimize their approach for handling 

noise interference, which affects classification reliability. 
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A comprehensive review of machine learning algorithms applied to published EEG datasets was conducted by Miltiadous 

et al. [20], who highlighted the strengths and limitations in various classification approaches. However, their findings 

indicated that clustering-based optimization was still underdeveloped. Pansani & Itikawa [21] integrated convolutional 

neural networks (CNNs) with continuous wavelet transform, improving feature extraction but facing overfitting issues with 

limited dataset sizes. 

In addition to seizure detection, researchers have explored biometric authentication. Singh & Tiwari [22] proposed a dual 

multimodal biometric authentication system based on a WOA-ANN and SSA-DBN; however, their focus was outside of 

seizure detection, and direct EEG application was lacking. Fredes et al. [35] leveraged wavelet-based analysis to refine 

seizure detection, but the lack of dynamic thresholding limited its robustness across varying patient conditions. Karim et 

al. [36] improved clustering performance via the enhanced gap statistic in K-means; but struggled with accurate cluster 

determination for highly variable EEG data. 

 In the context of security, encryption techniques have been increasingly incorporated into EEG data processing. Fadhil et 

al. [40] integrated ChaCha20 encryption with the Laplacian of Gaussian filtering, strengthening EEG data confidentiality. 

Najm et al. [41] conducted a comparative study between the ChaCha20 and Serpentine encryption algorithms, and 

evaluated their efficiency in lightweight encryption scenarios. Furthermore, Muhammed et al. [42] introduced a hybrid 

ChaCha20-ECDH encryption model, ensuring secure cloud-based EEG transmissions. 

Modern deep learning architectures have further refined seizure classification. Zhao [43] proposed a novel deep neural 

network tailored for robust seizure detection, whereas Jiwani [44] developed an LSTM-CNN hybrid model, that leverages 

sequential dependencies for more precise classification.  Tuncer et al. [45] expanded on this by implementing a bidirectional 

LSTM (Bi-LSTM) framework, which demonstrated enhanced temporal feature extraction in EEG signals. 

Machine learning applications have also gained prominence in seizure prediction. Tran et al. [46] explored multiple AI-

driven techniques for seizure detection, emphasizing model adaptability. Wang et al. [47] combined Symlet wavelet 
processing, a gradient boosting machine, and a grid search optimizer, which achieved high classification reliability. More 

recently, Zaid et al. [48] focused on preprocessed and combined EEG datasets, improving deep learning model 

generalizability. 

Several studies have highlighted wavelet-based approaches for optimizing EEG feature extraction. Slimen et al. [50] 

applied the dual-tree complex wavelet transform (DT-CWT) combined with machine learning classifiers to improve seizure 

detection rates.  

In addition to classification models, researchers have explored self-supervised learning and attention mechanisms. Yuan et 

al. [55] introduced a hybrid dense net–ViT framework with attention fusion, which significantly improved seizure 

prediction accuracy. Xiao et al. [56] employed self-supervised learning, highlighting the adaptability of attention-based 

deep learning models in biomedical signal analysis.  

Despite these advancements, existing approaches face challenges in optimizing seizure classification accuracy, reducing 

computational overhead, and ensuring robust EEG data security. This study builds upon prior works by integrating DT-

CWT-based feature extraction, enhanced clustering methods (K-means optimization), and ChaCha20 encryption, 

addressing critical gaps in feature robustness, classification reliability, and data security. 

3. METHODOLOGY 

This section elaborates on the methodology of the proposed approach. 

3.1 Dataset Description 

The University of Bonn EEG database is one of the most popular public databases used in brain signal analysis research, 
particularly in the field of epileptic seizure detection.  

The University of Bonn dataset was used in this research. This dataset serves as a benchmark for most studies published in 

the literature. Additional information about this dataset can be found in [11]. The international 10–20 system that Bonn 

University uses was employed to collect the EEG readings. The 10–20 system and the placements of the surface electrodes 

used to record the EEG signals are shown in Fig. 1. Five sets of recordings have been made, such as A, B, C, D, and E. The 

surface EEG recordings are the source of sets A and B. While sets C, D, and E, were taken from five epileptic patients, 

these sets were taken from five healthy volunteers who were awake. Set E shows ictal activity (seizures), whereas sets C 

and D were recorded while the five epileptic patients experienced seizure-free episodes. All of the sets A, B, C, D, and E, 

are used in this study to assess the suggested methodology. Five sets of epileptics for the EEG data are shown in Fig. 2. 



 

 

64 Lafta, et al, Mesopotamian Journal of Big Data Vol. (2025), 2025, 61–78 

 
 

 

 

 

3.2  Proposed Framework 

In this paper, we present a new approach for clustering epileptic seizures in EEG signals. Step 1 is segmentation, as input 

we have a set of EEG signals composed of five sets (A, B, C, D and E). The EEG time signals are segmented into smaller-
time intervals (epochs) for accurate processing and analysis of the relevant features in the epoch. The EEG data are the 

EEG signals at regular intervals that are ready for analysis. The second phase consists of analysis and segmentation with 

the use of the DT-CWT (decomposition and features extraction). The input is EEG signals in segmented form. The signals 

are decomposed and the frequency content is analysed via the DT-CWT. This method can be used to calculate highly 

useful statistical data such as variance, mean, power, and standard deviation. In this step, the result is a set of statistical 

features of the EEG signals that serve as criteria to classify the pathologic states. Our next task is tK-means categorization. 

The input is the statistical properties of the EEG signal. The K-means algorithm is used to cluster the extracted features. 

The number of clusters is determined automatically by the system to ensure proper classification of epileptic conditions. 

What you're left with is classified data that tells you how patients suffering from epilepsy can be identified. 

Fig. 1. The 10-20 system of electrode placement for recording an EEG pattern 

Fig. 2.  EEG samples from sets A, B, C, D and E 
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The last part of the proposed method is data encryption with ChaCha20 (Encryption). The inputs for this stage are patients’ 

data labeled by the K-means outcome, which includes the chosen EEg signal features as well as the secret encryption key 

for the ChaCha20 algorithm. The encrypted data is then passed to the ChaCha20 algorithm, which are a very fast stream 

encryption algorithm used for preserving confidentiality. ChaCha20 uses a 256-bit key and a nonce* for encryption 

security and diversity. Patient data are transformed into an encrypted version, so that the original data will be unreadable 

without the correct key. The encoded information is then ready to be safely transmitted or stored protected from 

unauthorized use. The result is EEG data processed into a very high level of security by the ChaCha20 encryption algorithm. 
No sensitive patient information is exposed in the process of recording, transmission or storage, and the encrypted file can 

only be decrypted with the correct key, adding an extra layer of security protection for medical information. The importance 

of this step. 

The ChaCha20 algorithm helps protect patient data from hacking or tampering, especially when they are shared in cloud 

systems or between different medical institutions. Compared with traditional encryption algorithms such as AES, 

ChaCha20 offers high processing speed and improved performance, making it a powerful choice for securing medical 

information. 

Figure 3 illustrates the architecture of the proposed approach. The next section contains a set of experiments that were 

conducted with the datasets. 

 

3.3  EEG segmentation 

Finding a more precise and efficient method to divide EEG signals into epochs and remove unnecessary data is crucial 

since EEG signals are nonstationary and contain redundant data. Each single channel EEG that contains on 4097 data points 

is partitioned into four segments with 1024 data points after one data point is removed. Each section must be completed 

within the specified time frame, which is 5.9 seconds. After that, 32 clusters are created from each signal segment.  The 

number of clusters is objectively noted and chosen throughout the training process. Six statistical features are chosen and 

extracted from every single subband. XMax, XMin, XMean, XSD, XMed, and XRG are the designations for the six 

extracted features.  The brief descriptions of the statistical features that were extracted are displayed in Table 1. While the 

mean and standard deviation are superior measures for data with a more skewed distribution, min and max are thought to 

be extremely good measures for time series data that have a symmetric distribution [36,37]. Fig. 4 shows the segmentation 

process of the EEG signals. 

 

 

 
 

 

Fig. 3.  Architecture of the proposed DT-CWT and K-means clustering method with ChaCha20 encryption. 
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Table 1. Short explanations of the statistical features. 

 

 

 

3.4 Feature Extraction 

Feature extraction, the step in raw EEGs are transformed into the feature set to be later employed in classification and 

encoding, is shown in Figure 1. It is necessary to refine the estimation to increase accuracy, decrease noise, and lower the 

computational burden. In this study, feature extraction is performed via the dual-tree complex wavelet transform (DT-

CWT), and the K-means clustering algorithm is employed to improve pattern clustering and the ability of the model to 

differentiate between normal and pathological signals.  

To further extract the features from the time frequency space, the DT-CWT decomposes the EEG signal into the frequency 

channel at multiple scales, and preserves the phase information of the signal, which significantly improves the shift 

invariance and directional selectivity compared with the traditional wavelet transform. This decomposition leads to a more 

effective representation of the EEG signals and provides enough details for subtle variations to be distinguished which is 

important for the separation of epileptic seizures and normal activity within the brain. 
After feature extraction, we apply K-means clustering to partition similar patterns so that a classification model for 

discriminating between seizure and nonseizure states can work efficiently in the model updating steps. The clusters are 

able to optimize the feature distribution and decrease the intraclass variance, to improve the classification performance. 

The right number of clusters (K) is found through statistical methodologies (e.g., the K-means gap statistic or elbow 

method) to provide robust PyG feature clustering.  

3.5 Dual Tree Complex Wavelet Transform 

Discrete wavelet transformation (DWT) is a powerful tool used in analysing data in time frequency domain. Although the 

discrete wavelet transformation provides efficient time frequency analysis for nonstationary data, it suffers from some 

problems related to aliasing, lack of directionality and shift variance.  The limitations of the discrete wavelet transformation 
can be solved by using the DT-CWT which introduces a very powerful time frequency representation for different data. In 

general, the DT-CWT employs two real DWT trees.  Figure 5 Illustrate the structure of the dule tree complex wavelet 

transformation. As shown in Figure 5, the imaginary part of the tree is represented at the bottom, and the complex wavelet 

coefficient is represented at the top. DT-CWT is used to decompose the EEG signals into set of subbands i.e., alpha, beta, 

Feature name Formula Description 

Maximum value XMax =Max [xn] Where Xn=1,2, 3, 4,…, n represents the data and N 

represents  data point  number and AM is the mean of 

samples 

Minimum value XMin =Minx [xn]  

Mean XMean =
𝟏

𝒏
∑ 𝒙𝒊

𝒏
𝟏   

Median XMed = (
𝑵+𝟏 

𝟐
)𝟐  

Standard Deviation  
XSD= √∑ (𝒙𝒏 −

𝑵

𝐧=𝟏
𝐴𝑀)

𝟐 

𝐧−𝟏
 

 

Range XRG = XMax  –  XMin  

Fig. 4. shows the process of segmentation for each single EEG channel. 
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delta, theta, and gamma for four levels of frequency decomposition. For each tree, five subband can be represented as y1, 

y2, y3, y4 and z4. Because the DT-CWT has two parts: real and imaginary, ten subbands (five subbands for each tree) can 

be obtained after four decompositions. (y1,1), (y2,2), (y2,1), (y2,2), (y3,1), (y3,2), (y4,1), (y4,2), (z4,1), and (z4,2) are 

some possible representations of the subbands. Thus, each pair represents the real or imaginary part; for example, (y1,1) 

represents the real part, whereas (y1,2) represents the imaginary part. The DT-CWT decomposes the EEG signals (clusters) 

to extract the frequency information for clustering the epileptic seizures in the EEG signals.   

 

 

3.6  The unsupervised K-means clustering algorithm 

K- means is an unsupervised robust algorithm used for large datasets. It works on dividing the data into k mutually exclusive 

clusters.  One of its limitations is that the initial value of k should be more accurate for each spectral data [36].  Let X be n 

multidimensional data points and the division into K clusters. The Euclidean distance is utilized to obtain a similarity index 

and the target of clustering is to minimize the summation of the squares of various kinds as follows: 

𝑐 = ∑  𝑘
𝑘=1 ∑ ||(

𝑛

𝑖=1
𝑥𝑖 −   𝑢𝑘)||2                                                                              (1) 

where K denotes the centers of K clusters  𝒖𝒌 denotes the Kth center, and 𝒙𝒊 denotes to the number of ith points in the 

dataset. Therefore, the following equation represents the solution of the centroid 𝒖𝒌:  
 

𝜕

𝜕𝑢𝑘

=
𝜕

𝜕𝑢𝑘

 ∑  

𝑘

𝑘=1

∑(

𝑛

𝑖=1

𝑥𝑖 −   𝑢𝑘)2                                                                                (2) 

=  ∑  

𝑘

𝑘=1

∑
𝜕

𝜕𝑢𝑘

𝑛

𝑖=1

(𝑥𝑖 −  𝑢𝑘)2          

                 =  ∑ 2(

𝑛

𝑖=1

𝑥𝑖 −   𝑢𝑘)                        

 
The final equation is as follows by setting equation 2 zero: 

𝑢𝑘 =
1

𝑛
 ∑  𝑛

𝑖=1 𝑥𝑖                                                                                          (3) 

The main idea for implementing the k-means algorithm is to randomly extract the sample points (K sample points) from 

the set of samples and detect them as the center of the initial cluster. Each sample point is divided into cluster depending 

on the nearest center point. After that, for each cluster, the center point for all samples is selected to be the center point of 

the cluster. These steps are repeated until the center point of the cluster does not change or until a specific number of 

iterations is reached.  

 

 

 

Fig. 5. 1D Dual tree complex wavelet transformation. 

https://www.sciencedirect.com/topics/computer-science/complex-wavelet
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3.7. ChaCha20 algorithm 

ChaCha20 was developed by Daniel Bernstein, and it is a synchronous stream encryption algorithm based on a simple and 

effective encryption structure that is highly resistant to attacks because it uses a 256-bit key and a 96-bit initialization vector 

(IV), which makes it a suitable choice for securing sensitive data [40]. In this study, ChaCha20 was used to encrypt EEG 

data collected from epilepsy the patients. First, the EEG data were collected from the patients, which requires security and 

protection to maintain privacy. Then, a secret key and a random initialization vector were generated to ensure encryption 
security. The medical data were encrypted by generating a series of random zeros (Keystream) via the key and the vector 

(IV). An XOR operation was applied between the original data (Plaintext) and the random zeros (Keystream) to obtain the 

encrypted medical data (Ciphertext). For the possibility of decryption later, the encrypted data were stored with the IV. 

Algorithm 1, and Figure 6 illustrate the working steps of the ChaCha20 algorithm for the proposed approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALGORITHM 1: ChaCha20_Encryption 

    INPUT: Key: 256-bit secret key. IV:  96-bit initialization vector. Plaintext: Data to be encrypted. 

    OUTPUT: Cipher text: Encrypted data. IV: Initialization vector used for encryption 

BEGIN 

    Step 1: Initialize the state 

    state      Initialize ChaCha20 State (Key, IV) 

    Step 2: Prepare to store cipher text 

    Cipher text       [] 

    Step 3: Process the plaintext in blocks 

    FOR each block in Plaintext DO 

        Step 3a: Generate keystream for the current block 

        keystream      Generate Key stream(state) 

        Step 3b: Encrypt the block using XOR with keystream 

        Encrypted _block      XOR(Plaintext[block], keystream) 

        Step 3c: Append the encrypted block to Cipher text 

        Append encrypted _block to Cipher text 

        Step 3d: Update the state for the next block 

        State      Update  State(state) 

    END FOR 
    Step 4: Return the encrypted data and IV 

    RETURN (Cipher text, IV) 

END 

Fig. 6. Flowchart illustrating the encryption process of the results using ChaCha20 for the proposed approach 
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3.8 Performance evaluation 

The clustering performance is evaluated via a set of statistical measures as follows: 

Accuracy: Accuracy is a common statistical measure used in evaluating the proposed methods. The mathematical formula 

is as follows: 

Accuracy = 
 (𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 ×100%                                                                    (4) 

Sensitivity: This is a statistical measure utilized to find the rate of actual positive clustering values as follows:  

 Sensitivity = 
 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  ×100%                                                                                              (5) 

Specificity: This is a statistical measure used to find the rate of negative subjects that is correctly defined as follows:  

Specificity = 
 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
   ×100%                                                                          (6) 

where TN (the true negative) represents the genuine nonepileptic subject classified as a correctly nonepileptic subject, 

whereas TP (the true positive) refers to the actual epileptic segment that is correctly classified. Additionally, false negatives 

(FNs) denote the number of epileptic segments mistakenly classified as nonepileptic, and false positives (FPs) represent 

the number of epileptic patients misclassified [58,59].  

4. EXPERIMENTAL RESULTS 

A series of studies were used to test and evaluate the ability of the proposed method to cluster epileptic seizures in EEG 

signals. These will be described in the subsections of this section of the research. 

4.1 Experimental Setup 

A series of tests were conducted to assess the suggested method via various statistical feature sets that were taken from the 

EEG segments. According to the data, there is a positive relationship between the number of retrieved features and the 

effectiveness of the suggested strategy. Additionally, the approach's performance is assessed using all EEG datasets (A-E).  

MATLAB software is used for these studies on a desktop computer with an Intel ® Core i7 processor running at 3.40 GHz 

and 8.00 GB of RAM. The coding experiment was also conducted via Eclipse on a laptop computer equipped with an 

Intel® core i5 processor and the Ubuntu operating system. 

4.2 Feature-based Clustering Results 

The approach performance for clustering is evaluated in terms of accuracy, sensitivity, and specificity. To assess the 
suggested method for every EEG dataset, the retrieved statistical features were first tested independently.  The performance 

of the suggested method, which employs various statistical features for every EEG dataset, is displayed in Figure 7 and 

Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Fig. 7. Variation in Clustering Results Based on Extracted EEG Signal Features 
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In the suggested method, the input vector for training the K-means algorithm was the statistical features that were removed 

from the subbands. The results indicate that the first four features e.g., Min, Max, Mean and Standard Deviation achieved 

higher accuracy rates than did the other two features. Therefore, the first four statistical feature sets with high accuracy 

rates are selected to evaluate the performance of the approach in the next experiments.  

4.3 EEG combination results 

Most studies in the literature have clustered epileptic EEG signals using unbalanced samples. Equal and unequal samples 

such as {(AB vs E), (AC vs E), (CD vs E), (ACD vs E), (ABCD vs E), and (AB)(CD) vs E} are used for clustering in this 

study.  

Figures 8-11 illustrate the approach performance when all the clustering cases are used. The results, indicate that, the 

highest accuracy rate is achieved for clustering set A against set E as presented in Figure 8. The accuracy rate is 99% for 

clustering set A against set E, whereas it is 96%, 98% and 98% the clustering cases B, C, and D against E respectively.   

Another experiment was conducted in this study using equal and unequal samples for the clustering cases. Figure 9. The 

effectiveness of the proposed approach is shown by the clustering cases of AB and AC against E. The obtained results 

show that equal and unequal numbers of samples for the clustering cases AB and AC against E reached 97% and 98% 

respectively.     

Furthermore, the clustering cases CD and ABC against E were investigated and recorded in this study. High clustering 

rates of 97% and 98% are achieved for equal and unequal numbers of samples, respectively. Similarly, the clustering cases 

ABCD and (AB) (CD) achieved high clustering rates of 96% and 97% respectively.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

EEG dataset 

Statistical Features  

Min Max Mean Standard Deviation Median Range 

Set A 55% 50% 60% 71% 45% 46% 

Set B 59% 55% 54% 70% 50% 50% 

Set C 55% 58% 55% 69% 54% 55% 

Set D 55% 52% 59% 70% 48% 53% 

Set E 58% 59% 55% 75% 40% 50% 

Fig. 8. The clustering accuracy of proposed approach using sets from sets A-D against set E. 

TABLE II. THE PERFORMANCE OF THE APPROACH USING DIFFERENT FEATURES FOR ALL EEG SETS.  

Fig. 9. The clustering accuracy of proposed approach using sets from sets AB and AC against set E. 
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4.4 Comparison with Existing Methods  

In this study, a comparative study was conducted with several existing methods to evaluate the performance of the proposed 

approach. In this comparison, we compared our approach with several methods proposed in the literature that address the 

problem of epileptic seizure detection in EEG signals via the same dataset. On the basis of the results presented in Tables 

3 and 4, wavelet transform techniques were used to find the best wavelet function. On the basis of the feature selection 

technique, various fixed features were extracted and recorded in this study. Compared with previous techniques, the 

proposed technique achieves a higher accuracy rate. 

Although modern techniques have been used in previous studies, the approach proposed in this study is the most advanced 

and yields the highest results despite using the same dataset. DT-CWT combined with k-means yielded a higher clustering 

rate than did the other methods in terms of accuracy, sensitivity, and specificity. Some studies have the use of the same 

datasets to detect epileptic seizures, and their accuracy rates are not as high as those of our proposed approach. 

 

 
 

 

 

 

 

 

 

Fig. 10. The clustering accuracy of proposed approach using sets from sets CD and ABC against set E. 

Fig. 11. The clustering accuracy of proposed approach using sets from sets ABCD and (AB)(CD) against set E. 
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TABLE III. COMPARISON OF DIFFERENT APPROACHES ON THE UNIVERSITY OF BONN EEG DATASET INCLUDING THE PROPOSED 

METHOD 

 

 
TABLE IV. EXTENDED COMPARISON OF STATE-OF-THE-ART EEG CLASSIFICATION METHODS INCLUDING THE PROPOSED DT-

CWT + K-MEANS APPROACH 

 

Reference Approach 
Average 

Accuracy 

Average 

Sensitivity 

Average 

Specificity 
Additional Metrics 

[49] 
DWT + SVM + RUSBoosted 

Ensemble 
97.00% 96.67% - FPR: 3.24% 

[50] 
Dual-Tree Complex Wavelet 

Transform + Machine Learning 
98.50% 97.80% 96.90% 

Multiple classifiers 

tested 

[51] 
Wavelet Transform + SVM (Long-

term iEEG) 
- 94.46% 95.26% FDR: 0.58/h 

[52] ResBiLSTM (ResNet + BiLSTM) 98.88-100% - - 
Binary/Ternary 

classification 

[53] Meta-sampling + Ensemble Classifier 92.52% 92.58% 92.51% Scalp EEG dataset 

[46] 
Machine Learning with DWT + 

Binary PSO 
98.40% - - 

75% dimensionality 

reduction 

[54] 
Transformer-based Multi-Channel 

EEG 
97.50% 97.50% - 

Event-based: FDR 

0.06/h 

[55] DenseNet-ViT with Attention Fusion 96.80% 95.20% 97.40% Seizure prediction task 

[56] Self-supervised Transformer (SLAM) 97.07% - - 
Patient-specific 

performance 

[57] 
Multi-channel Vision Transformer 

(MViT) 
94.50% 93.80% 95.10% Scalogram-based input 

[58] 
Tunable-Q Wavelet + CNN (Real-

time) 
97.57% 98.90% - 

FPR: 2.13%, Delay: 

10.46s 

[59] 
Wavelet-based Alpha/Beta Band 

Analysis 
96.30% 94.80% 97.20% 

Computationally 

efficient 

Proposed DT-CWT 

+ K-means 
Coupling DT-CWT with k-means 99% 98% 98% ChaCha20 encryption 

 

4.5 ChaCha20 algorithm performance analysis 

The ChaCha20 algorithm, which uses a 256-bit secret key and a 96-bit IV, has proven to be highly effective and capable 

of securing data. It has also proven to be highly fast in encryption, with hash values ranging from 5.0E+08 to 2.0E+09 

during repeated encryption operations ranging from 1-96. Figure 12 illustrates this. This level of security makes it difficult 

for attackers to decrypt sensitive information, which is important in healthcare applications. 

Reference Approach 
Average 

Accuracy 

Average 

Sensitivity 

Average 

Specificity 
Additional Metrics 

[43] 
1D CNN Deep Neural 

Network 
97.63-99.52% - - 96.73-98.06% (3-class) 

[44] LSTM-CNN Hybrid Model 98.50% 97.80% 98.90% End-to-end classification 

[45] 
Bi-LSTM Network 

Architecture 
96-99% - - Mean success: 97.78% 

[46] 
Discrete Wavelet Transform 

+ ML 
98.40% - - 

75% dimensionality 

reduction 

[47] 
Symlet Wavelet + Gradient 

Boosting 
93-99.66% - - Three-class: 93.9% 

[48] 
Pre-processed Combined 

EEG + FFT 
95-98% - - Original + FFT optimal 

Proposed DT-CWT + 

K-means 

Coupling DT-CWT with k-

means 
99% 98% 98% ChaCha20 encryption 
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The performance evaluation of the ChaCha20 algorithm across 100 iterative trials demonstrated a high level of consistency 

in both speed and efficiency. The number of encrypts remained within a narrow margin—ranging from 6.8 ms to 7.2 ms—

indicating temporal stability regardless of repeated execution. On average, ChaCha20 achieved a processing time of 

approximately 7.0 ms, which underscores its suitability for real-time applications where latency must be minimized. In 

parallel, the efficiency rates fluctuated mildly between 94.4% and 96.3%, with a mean value of 95.6%, reflecting the 

algorithm’s ability to maintain reliable throughput while conserving computational resources. Figure 13 illustrates this. 

These results highlight ChaCha20’s balanced design, which enables secure encryption without imposing significant delays, 

making it a viable candidate for medical data transmission systems such as portable EEG devices.  

 

Its consistent performance under repeated stress reinforces its practicality in time-sensitive environments that demand both 

security and responsiveness.             

4.6 Discussion 

The findings indicate that the introduced models DT-CWT, K-means and ChaCha20 achieve excellent performance for 

epilepsy classification reaching an accuracy of 99% for the ten scenarios. Results: Compared with existing techniques, the 

proposed approach shows better performance in the analysis of EEG and detection of epileptic seizures with superior 

accuracy. Second, the data were secured via encryption with ChaCha20 in our application to secure medical information 

and keep patient information secure during submission. 

• Strengths of the methodology 

✓ High accuracy in classification: The model showed good performance in the identification and classification of 

epileptic cases and contributed to good support for physician decisions. 

Fig. 12. ChaCha20 algorithm (Hash code). 

Fig 13: Performance Metrics of ChaCha20 – Speed and Efficiency Across Repeated Executions 
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✓ Improved data security: The method usesChaCha20 encryption for the confidentiality of patient data and hence 

is well suited for medical studies with high security needs. 

✓ Computational efficiency: DT-CWT allows for efficient analysis of neural data, enhancing model performance 

while maintaining efficiency in computational time. Scalability: The introduced model can be extended to 

diagnose other neurological diseases via engineered ensemble learning methods such as AdaBoostand, which 

paves the way for enhancing brain signal analysis in the future. 

• Limitations and challenges 

✓ Model sensitivity to K in K-means: For the K-means method, the number of clusters to form K as such, must be 

known a priori-Selecting the K in K-means achieves the best classification accuracy. 

✓ Compability of ChaCha20 in bulk applications: Even though ChaCha20 is efficient in encryption, other 

algorithms such as Speck, may need to be tested to determine whether it can become more efficient with a large 
volume of data. 

✓ Machine learning potential for improvement: Model performance can be further improved via deep learning (DL) 

to increase classification accuracy and the ability of the model to support more complex data.  

5. LIMITATIONS 

 However, the performance of the proposed model in DT-­CWT and K-means clustering as well as the classification of 

EEG signals has several limitations, which could potentially influence the accuracy of the findings as well as the practical 

applicability of the obtained results. The most significant limitations are as follows: 

• Data and Sample Limitations: 

✓ Sample size: The dataset used in the study is the University of Bonn EEG database, which has few samples in the 

category and may prohibit generalizing the results. 

✓ Environmental noise factors: We do not consider external interferences that could occur during real-time EEG 

recording (e.g. electrical noise and environmental artefacts). 

• Methodological and Technical Considerations: 
✓ Wavelet Transform Effect: Even though the DT-CWT enhances the feature extraction, for classification, 

extracting the most significant features relies on the number of decomposition levels. 
✓ Computational complexity: The computational cost might be a bottleneck when this method is applied in real-

time monitoring systems of EEGs because of the necessity of high resolution analysis of signals. 

• Practical Issues and Challenges for Implementation: 

✓ ChaCha20 Encryption Issue: Even though the encryption technique is proven to protect patient privacy, further 

confirmation to ensure successful integration between EEG signal processing and the encryption algorithm is 

needed. 

✓ Clinical Implementation: For the model to be incorporated successfully into healthcare systems, the groups of 

research-design-validation development teams collaborate during its deployment. 

Although this study employs advanced techniques such as Dual-Tree Complex Wavelet Transform (DT-CWT) for 

detecting abnormal patterns in EEG signals and incorporates ChaCha20 encryption to ensure data security, certain 

limitations remain. Specifically, the proposed framework does not directly address data poisoning threats within federated 

learning environments, nor has it been validated in broader cybersecurity threat [60,61]. 

6. CONCLUSION AND FUTURE WORK 

 Although remarkable progress has been made in the field of medical technology, fast, reliable, and automatic methods for 

clustering epilepsy cases correctly and uniformly are lacking. This paper proposes an elaborate approach for aggregating 

EEG cases of epilepsy; and ensures data security through encryption. The proposed approach can achieve good accuracy 

in disease state classification by applying the dual-tree complex wavelet transform (DT-CWT) to obtain the statistical 

features and then the K-means classifier. The ChaCha20 algorithm was used to encrypt the output to enhance the privacy 

safety of medical records, and to ensure the confidentiality of patient information. 

The experimental results show that the proposed scheme achieves high performance for both encryption and clustering, 

with 99% clustering accuracy under ten cases. The proposed method outperforms several other methods in the literature in 

terms of both accuracy and consistency in epileptic seizure classification. 

Further work is intended to apply the proposed approach to EEG-based signal classification combined with some other 

adaptive clustering methods such as AdaBoost and boosting, increasing the precision of EEG signal classification. To 

enhance the universality of the model in medical diagnosis, we will check whether it can be extended to patients with other 

types of neurologic diseases. To show how well the patient data are secured by the Speck algorithm, it can also be evaluated 
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as an alternative to the ChaCha20 algorithm. Finally, we discuss the adaptability of the approach to the telehealth context, 

enabling a detailed and accurate investigation of medical time series data.  
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