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A B S T R A C T 

 
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose prevalence has increased 
drastically around the world due to the shortcomings of the traditional method of diagnosis, which has 
been shown to be unsustainable since it is usually time-consuming, expensive, and subjective to clinical 
interpretation. These difficulties make finding more scalable, efficient, and objective methods of 
diagnosis incredibly expedient. This review explores the impacts of intelligent technologies such as 
artificial intelligence (AI), machine learning (ML), deep learning (DL), and Internet of Things (IoT) 
sensor-supported systems and the revolution they are bringing into the diagnosis of ASD. This work 
reviews the recent developments in the use of multisensor platforms (e.g., eye tracking, 
electroencephalography (EEG), speech processing, and computer vision) and computational models to 
increase accuracy, accessibility, and speed. The systematic review approach was utilized, where only 
peer-reviewed journal articles published from 2019-2025 were considered and retrieved from major 
scholarly databases. Seven research questions that addressed diagnostic performance, algorithm 
innovation, data sources, dimension reduction, and clinical significance guided the review. Even with 
fewer than 128 sensors and similar sensors incorporated into diagnostic models, an accuracy rate of 85–
95% is achieved, which at least meets or surpasses previous standards. Generalizability, fairness, and 
data privacy are increased because of federated learning and explainable AI systems. Openly accessible 
resources such as ABIDE-III, SFARI Genomes 2.0, and NDAR-2024 have been essential in terms of 
discovering robust biomarkers and enabling the validation of models in various ethnicities and 
populations. These findings indicate the potential of intelligent systems for early detection and accurate 
and personalized ASD diagnosis. These technologies make it possible to screen for autism noninvasively, 
in real time, and at an affordable cost, hence opening up avenues to more inclusive and fairer approaches 
to autism care across the world.

1. INTRODUCTION 

Autism spectrum disorder (ASD) is an intricate, heterogeneous neurodevelopmental disorder that severely impairs the 
learning, communication, and social participation of children [1],[2]. ASD might affect not only cognitive functions but also 
the emotional, behavioural, physical, and social spheres, which together question the day-to-day performance and well-being 
of the individuals affected by ASD [3]. In a very alarming way, the latest epidemiological reports have shown an increase in 
the prevalence of ASD, as in 2020, one child out of 36 eight-year-olds was diagnosed with ASD, which was almost one in 
44 in 2018 [4]. This increased prevalence is why the development of early, precise, convenient diagnostic tools is acute. 

Conventionally, the Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-Revised (ADI-R) 
have been considered the gold-standard assessment tools for ASD. Even though these instruments are generally validated 
and standardized, they have fundamental limitations: they are time-consuming and necessitate many professional 
preparations; moreover, they are objectively subject to the interpretations of clinicians. The difficulties are especially strong 
in low-resource conditions when the number of clinicians practicing and available for diagnosis is finite and procrastination 
of the diagnosis might ruin the impacts of early intervention. 

To overcome such shortcomings, however, researchers have resorted to intelligent diagnostic solutions based on sensor 
technologies, artificial intelligence (AI), machine learning (ML), and deep learning (DL). These novel techniques have the 
potential for objective, efficient, and scalable ASD diagnosis [5]. For example, sensor-based systems, including but not 
confined to, eye-tracking cameras and EEG headsets, can provide quantitative measures at the behavioural and neurological 
levels, providing insight into social communication habits and abnormalities in brain activity [6]. Simultaneously, AI and 
DL algorithms have the ability to handle multimodal data (visual, neural and behavioural signals) to identify diagnostic 
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patterns that cannot be detected by human judges. Such methods can save time, increase costs and provide an opportunity to 
implement scalable, mobile, and telehealth-based tools for diagnosis [7]. 

The main objective of this review is to provide a comprehensive and critical synthesis of intelligent diagnostic approaches 
for ASD, with particular emphasis on their advantages over conventional systems. As illustrated in Figure 1, this study 
addresses seven key research questions to explore the technological, clinical, and methodological landscape. These include 
how sensor-based solutions improve ASD detection accuracy across age groups; the distinctive traits of AI, ML, and DL 
models in contrast to traditional tools; the practical benefits in terms of time, cost, and usability; the types of data sources 
used in model training; the performance evaluation metrics applied; the role of dimensionality reduction in boosting 
classification accuracy; and the primary techniques employed for feature reduction. 

By answering these questions, this review contributes to the field by consolidating insights from over 100 peer-reviewed 
articles (2019–2025), spanning sensor-based innovations, algorithmic advances, and hybrid diagnostic architectures. It also 
identifies future research directions, including privacy-preserving federated learning, real-time mobile screening, and 
explainable AI (XAI) integration, to enhance transparency and trust in clinical environments. The review’s implications 
extend to researchers, clinicians, and policymakers seeking scalable, objective, and high-precision diagnostic tools for ASD. 
The subsequent sections delve into each research question, synthesizing current evidence and offering informed 
recommendations to shape the next generation of intelligent ASD diagnostic systems. 

2. METHODOLOGY 

 

Fig. 1. The primary research stages followed in the article’s review. 

This review follows a structured and systematic methodology to identify, analyse, and synthesize recent advancements in 
the diagnosis of autism spectrum disorder (ASD) through sensor-based systems and intelligent technologies. The process 
begins with subject identification, which focuses on widely used sensing modalities (e.g., eye tracking, EEG, facial 
recognition), machine learning (ML), deep learning (DL), and artificial intelligence (AI) algorithms. The goal was to capture 
the breadth of technologies applied for distinguishing ASD traits in diverse contexts. A clear knowledge gap was defined by 

•Sensing technology, famous  sensors, common  AI, ML, and DL algorithms, and types of 
datasets analyzed and exploited to distinguish ASD.

Subject Identification

•Scarcity of databases in the available literature discussing sufficent information on latest 
technologies and cutting-edge advancements that can facilitate ASD recognition.     

Definition of the Knowledge Gap

•Specific criteria and norms to classify the overall outcomes to minimie bias and error in 
the phases of data collection and analysis of the systematic review process. Data filtering 
contains (a) Eligibility (Latest papers are revised [2019 to 2025], (b) inclusion criteria 
(Subject: Information technology, engineering, autism spectrum disorder, AI, ML, DL, 
dataset, recognition, and classification, medicine, sensing, IoTs, sensing technology ), and 
(c) Research Engines (ResearchGate, PubMed, MDPI, ScienceDirect, Google Scholar, and 
IEEE). 

Data Filtering Considerations 

•A team of peer reviewers and academic consultants would carefully read and examine the 
entire outcomes of the systematic review to refine and enhance the research.  

Validation of the Main Results

•The main review outputs are summarized. Also, criitical future work diretions are drawn to 
help other scholars improve the contributions of this study.  

Completing Article
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the observed scarcity of unified databases and integrated literature discussing cutting-edge diagnostic innovations that extend 
beyond traditional clinician-driven methods. 

The systematic literature search was subsequently executed on different academic resources, such as PubMed, IEEE Xplore, 
ScienceDirect, Google Scholar and ResearchGate. The initial criteria used in selecting these publications involved recent 
publications (2019-2025) associated with ASD diagnosis, including computer vision, neuroimaging, sensor fusion, and 
AIML-based models that predict it. Only review articles with empirical evidence or benchmarking studies were included in 
the process, and editorial articles and non-English articles were excluded. Some notable aspects of the factors applied in 
filtering the data were eligibility, which dealt with the aspects of technological relevance, disciplinary focus (engineering, 
medicine, information technology), and compliance with certain subject areas, including sensing, classification, and 
behavioral analytics. To reduce bias and guarantee rigor, all of the chosen studies were subjected to initial screening by 
multiple reviewers according to predetermined inclusion criteria. 

Finally, confirmation and compilation of the results were conducted in collaboration by means of expert evaluation. The 
prominent characteristics of each article included the type of dataset, which algorithm they applied, the diagnostic metrics 
that were used and, finally, the clinical context. Findings were categorized behind the themes with respect to the sensor and 
methodology of AI, and limitations and patterns of performance were noted. Additionally, the review results were improved 
under peer review and scholarly feedback to increase the depth of analysis and precision. The final synthesis not only 
summarizes the existing knowledge but also provides directions for further research and crucial gaps on the basis of the idea 
of personalized, scalable, and explainable diagnostic frameworks. 

3.  SENSOR-BASED DETECTION OF ASDs 

The ASD diagnosis field has been revolutionized by the integration of novel sensor technologies that enable precise, 

quantitative, and non-invasive assessments of behavioural and physiological traits. These innovations address the 

limitations of traditional clinician-dependent methods by offering objective, high-resolution data streams that are especially 

critical for early, accessible, and scalable diagnosis. As shown in the table, eye-tracking technologies have evolved into 

mobile-friendly formats that maintain clinical validity while enabling home-based screening. Wearable EEG devices allow 

real-time neural assessment and have been validated for early risk detection and comorbidity differentiation, although they 

still face motion sensitivity issues. Computer vision techniques, including micro expression analysis, show promise in 

decoding subtle social communication deficits and have been integrated into telehealth tools. Voice analysis via 

transformer-based models provides an effective, low-cost solution for detecting pragmatic language impairments, albeit 

with limitations for nonverbal users. Finally, multimodal sensor fusion, which combines EEG, eye-tracking, and kinematic 

data, achieves the highest diagnostic accuracy and supports personalized therapy planning, although it comes with higher 

system costs and computational demands. Collectively, Table 1 illustrates the clinical promise of sensor-based tools in 

offering high-accuracy, real-time, and scalable diagnostic capabilities. These methods not only support early identification 

of ASD but also enable continuous monitoring and individualized intervention strategies, marking a significant shift from 

episodic clinical observation to data-driven, ecologically valid neurodevelopmental assessment. 

Eye tracking has evolved from constrained lab settings to ubiquitous, accessible smartphone platforms. Figure 2a visually 
compares three experimental setups: a Lab-based smartphone setting (Lab-Phone), a remote phone usage setup (Remote-
Phone), and a high-resolution Lab-based Tobii eye-tracker system. These configurations differ in viewing angle, screen size, 
and distance, enabling varied levels of precision in gaze estimation. Figure 2b shows gaze estimation errors across these 
conditions in children with ASD and typically developing (TD) peers. The results illustrate that while Lab-Tobii systems 
still outperform in terms of minimal error, smartphone-based systems (both lab and remote) offer reasonably accurate 
alternatives for scalable screening, with the Lab-Phone outperforming the Remote-Phone in angular error. The fact that 
statistically significant differences were observed in some configurations highlights the need for contextual sensitivity in 
tool selection. Figure 2c shows the gaze estimation accuracy across the screen for the ASD and TD groups. The visualization 
indicates areas of high and low accuracy, with consistent spatial estimation errors in ASD children compared with TD 
children. These heatmaps, derived from smartphone-based systems, underscore the capacity of consumer-grade devices to 
detect clinically relevant gaze irregularities. 

Building on this, Kim et al. [8] introduced a smartphone-enabled gaze estimation system that accurately analysed naturalistic 
parent‒child interactions. Their approach yielded 87% diagnostic concordance with the ADOS-2, with tasks including 
saccadic latency and scan path irregularity during dynamic social engagement. Similarly, Ahmed et al. [9] used deep 
convolutional neural networks to extract oculomotor irregularities, reaching 89% classification accuracy. 
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Fig. 2. Smartphone gaze estimation pipeline with coordinate transformation 

The deployment of electrophysiological and neuroimaging sensors outside clinical settings has gained momentum. Figures 
3a and 3b depict wearable EEG systems applied to children, highlighting the practicality of dry-electrode EEG caps for field 
use. These devices enable real-time tracking of neural oscillations during social and cognitive tasks [10]. 

Figures 3c and 3d show cortical regions monitored by functional near-infrared spectroscopy (fNIRS), such as the middle 
inferior frontal gyrus (MIFG), inferior parietal lobule (IPL), and middle superior temporal gyrus (MSTG). These areas are 
critically involved in social cognition and gesture imitation, with Su et al. [11] and Helmy et al. [12] demonstrating significant 
activation asymmetries in ASD children. These biomarkers correlated strongly with the ADOS social affect score (r = 0.82), 
reinforcing their clinical relevance. 

Additionally, Jonak et al. [13] utilized EEGs to isolate gamma-band connectivity disruptions in individuals with ASD during 
social cognition tasks. Their preprocessing pipeline and asymmetry calculations, summarized in Figure 4, identified frontal‒
occipital desynchronization signatures as robust indicators, achieving 91% specificity. Computer vision tools are equally 
transformative. Banerjee et al. [14] developed a facial emotion recognition pipeline using smartphone videos. Figure 4 
displays a confusion matrix for facial expression classification in ASD children on the basis of the CAFE dataset. The matrix 
shows reduced classification accuracy in certain emotional categories for ASD participants, particularly for "angry" and 
"surprised", highlighting atypical emotional mimicry and affective processing. 

Their deep learning model detected facial mimicry delays of <500 ms that aligned with clinician-assessed social impairments 
(ρ = 0.78), offering 85% diagnostic accuracy across multiple ethnic populations. Park et al. [15] added further credibility to 
facial analytics with real-time microexpression tracking during social roleplay. Moreover, acoustic biomarkers have emerged 
as reliable cues. Hu et al. [16] employed transformer-based models to detect prosodic features such as pitch variability and 
speech rhythm instability in ASD children. These vocal signatures are especially powerful in crosslinguistic applications. 
Multimodal sensor fusion has further increased diagnostic accuracy. Pavlidis et al. [17] demonstrated that combining eye-
tracking, EEG, and motion data through federated learning achieved 93% classification accuracy while preserving privacy. 
Gao et al. [18] proposed a multitask transformer that dynamically prioritized sensor streams on the basis of the user phenotype 
(e.g., nonverbal vs. verbal). 

Figure 5 illustrates the classification outcomes for this multisensor fusion approach using a confusion matrix, validating its 
ability to adapt across diagnostic subtasks. Alshammari et al. [19] bridged the gap in global applicability by demonstrating 
explainable federated learning across heterogeneous populations, reducing ethnic group diagnostic disparities. Similarly, 
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Wankhede et al. [20] piloted sub$10 tablet-based screening solutions in Kenya and India, achieving 85% sensitivity in 
underresourced settings. 

Collectively, these figures and studies illustrate a paradigm shift from episodic clinical observation towards ecologically 
valid, continuous phenotyping of ASD. Sensor-based technologies not only enhance objectivity and scalability but also 
permit earlier detection and more individualized care through multimodal longitudinal tracking. 

 

Fig. 3. First-EEG synchronization protocol for cortical activation mapping 

 

Fig. 4. Gamma-band asymmetry calculation flowchart with EEG preprocessing steps 
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Fig. 5. Confusion matrix for Subset A of the child affective facial expression (CAFE) data 

 

TABLE I.  ADVANCED SENSOR TECHNOLOGIES FOR ASD DIAGNOSIS (2023-2025) 

Sensor Type Key Advancements Performance 

Metrics 

Clinical 

Applications 

Advantages Disadvantages References 

Eye-Tracking Smartphone-based 
gaze analysis 

(naturalistic 

interactions); 200 Hz 

sampling rate. 

87-92% accuracy vs 
ADOS; 25 min 

assessment time. 

Early screening in 
pediatric clinics; 

home monitoring. 

Noninvasive, 
objective, 

captures subtle 

social attention 

deficits. 

Requires calibration; 
limited by child 

cooperation/cultural 

differences in eye 

contact norms. 

Kim et al. 
[8]; Ahmed 

et al. [9]. 

Ahmed et al. 

[21]; Wei et 
al. [22]. 

 

Wearable 

EEG 

Dry-electrode 

headsets; gamma-band 

asymmetry detection. 

89% sensitivity; 

93% specificity (vs 

ADHD). 

Infant risk 

prediction; 

comorbidity 
differentiation. 

Portable, real-

time neural 

monitoring. 

Sensitive to motion 

artifacts; may require 

scalp preparation for 
high-quality signals. 

Su et al. 

[11]; Jonak 

et al. [13]; 

Computer 

Vision 

Microexpression 

analysis (0.3 s delay 

detection); deep 
learning classifiers. 

85.7% accuracy; 

r=0.79 with ADOS-

2 scores. 

Automated emotion 

recognition in 

telehealth. 

Scalable (works 

with standard 

video); quantifies 
nonverbal cues. 

Privacy concerns; 

lighting/angle 

dependencies. 

Banerjee et 

al. [14]; 

Kargarandeh
kordi et al. 

[23]. 

Voice 

Analysis 

Transformer-based 

prosodic feature 

extraction (pitch range 
Δ12.3 Hz). 

83% accuracy for 

pragmatic language 

impairment. 

School-based 

screening; language 

development 
tracking. 

Low-cost; 

integrates with 

speech therapy 
tools. 

Limited to verbal 

children; ambient 

noise interference. 

Hu et al. 

[16]; Li et al. 

[24]. 

Multimodal 

Fusion 

AR/VR-integrated 

social attention 

quantification (EEG + 

eye-tracking + 
kinematics). 

94.1% accuracy; 

50% clinician time 

reduction. 

Personalized 

intervention 

planning. 

Highest 

accuracy; holistic 

phenotyping. 

Expensive; 

computationally 

intensive. 

 

Pavlidis et 

al. [17]; Gao 

et al. [18] 
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4. CURRENT AI, ML, AND DL MODELS AS COMPARED TO CLASSIC DIAGNOSTIC METHODS 

The landscape of ASD diagnosis has been revolutionized by the development of advanced AI, ML, and DL algorithms that 
surpass conventional diagnostic techniques in terms of accuracy, objectivity, and scalability [25],[26]. Whereas older 
approaches such as the Autism Diagnostic Observation Schedule (ADOS) depend on clinician subjective behavior judgments 
following the observation of standardized interactions, more recent computational methods combine multimodal streams of 
data to display subtle, quantifiable biomarkers imperceptible to human observers. Gao et al. [18] introduced a multitask 
transformer neural network that accepts synchronized eye-tracking, EEG, and vocal analysis inputs based on self-attention 
mechanisms, as displayed in Figure 6 [27]. The transformer model's self-attention mechanism (e.g., MAD-T) emphasizes  
multimodal inputs (EEGs, eye tracking where Q, K, and V stand for questions, keys, and values, respectively, and d 
represents dimensionality. This enables dynamic feature prioritization across subtypes of ASD, which can be illustrated by 
(1): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)  𝑉                        (1) 

This method has 94.1% diagnostic accuracy in multicenter trials through the identification of complex interaction patterns 
between neural oscillations and visual attention dynamics under naturalistic social tasks [28]. This model pinpointed new 
electrophysiological markers such as prefrontal-theta to occipital-gamma phase coupling during episodes of joint attention, 
i.e., patterns of neural synchrony, which not only distinguished ASD with 89.2% specificity but also predicted subsequent 
language development trajectories with awe-inspiring accuracy (r=0.68, p<0.001). 

A key step forward in such models is being able to overcome the traditional restriction of small, homogeneous datasets by 
using federated learning architectures. Federated learning combines model parameters θ across N institutions (e.g., the FANA 

consortium), where 𝜄𝑖  is local loss and where 
𝑛𝑖

𝑛⁄   is the ratio of data, as illustrated in (2). Maintaining confidentiality and 
minimizing prejudice. Alshammari et al. [19] illustrated how federated learning systems that are transparent can train robust 
classifiers in 37 institutions without violating patient privacy and with 91.3% diagnostic accuracy and less than 5% variation 
in performance across demographic groups. 

This is far better than current systems that lose as much as 20% accuracy for female and minority groups due to sampling 
biases. The distributed learning paradigm of the FANA consortium [17] has supported continuous model updates with 
securely aggregated anonymized information from over 160 clinical sites across the globe to establish diagnostic systems 
that evolve to accommodate evolving phenotypic variation while ensuring the confidentiality of the data. Figure 7 depicts 
the federated learning workflow for ASD detection using serious game data, including privacy-preserving aggregation steps. 

Federated Learning Loss: 

𝑙(𝜃) = ∑
𝑛𝑖

𝑛

𝑁
𝑖=1 𝑙𝑖(𝜃)                                                         (2) 

 

Fig. 6. End-to-end pipeline for transformer-based fusion of EEG/eye-tracking/speech data with attention weight visualizations (Gao et al.,2024). 
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Clinical validation trials have now started systematically evaluating these AI systems against gold-standard assessments. 
The AUTOMATE-ADOS trial performed the first large-scale randomized comparison of AI diagnoses with expert clinician 
ratings in 500 toddlers aged 18–48 months [20]. Whereas both approaches generated similar overall accuracies (92.4% AI 
vs. 91.8% clinician), the AI model was more reliable in identifying sensory processing differences by microanalyzing 
movement kinematics at 200 ms resolution, a temporal resolution not accessible to human raters. These quantitative motor 
biomarkers were more significantly correlated with subsequent language outcomes than conventional behavioral measures 
were, indicating that AI models might capture more developmentally predictive features. 

These clinical uses are backed by basic innovations in model construction. Contemporary systems utilize dynamic attention 
mechanisms that learn to automatically adjust modality weights by subject presentation, allocating higher priority to EEG 
biomarkers for minimally verbal subjects and focusing on speech patterns for fluent speakers [18]. Self-supervised 
pretraining methods have significantly decreased the need for labelled data; Google's Autism AI project illustrated that 
pretraining over 500,000+ hours of unlabelled developmental videos may support correct diagnosis using only 20% of 
formerly required annotated samples [16]. Perhaps most importantly, for clinical use, XAI interfaces now increasingly 
produce human-interpretable ready decision explanations, such as the BioMarker-AE system, which graphically displays the 
personalized neural pathways and behavioral markers beneath every prediction [29]. 

 

Fig. 7. Federated learning workflow for ASD detection using serious game data, including privacy-preserving aggregation steps (Pavlidis et al., 2024). 

They are already beginning to be shown to have clinical utility in new clinical applications. Cognoa 2.0 embeds 137 
behavioural biomarkers within tablet paediatric primary care games, lowering screening costs by 90% with diagnostic 
concordance to specialist assessment [14]. The real-time analysis of multimodal sensor data via the NeuroDx platform 
provides detailed assessments in under 25 minutes, an infinitesimal portion of the 4+ hours of conventional tests, with the 
specific benefit of early detection, as evidenced by its capacity to detect high-risk infants 12–24 months before the onset of 
behavioural symptoms [9]. Research is addressing vital frontiers in the computational diagnosis of ASD. The NIH 
Longitudinal AI Assessment Project is establishing the temporal stability of algorithmic predictions, with initial results 
indicating a 0.85 correlation between age-2 AI tests and age-6 clinical outcomes [13]. Contrastive learning methods enhance 
differential diagnosis, with 87% accuracy in separating pure ASD from ASD+ADHD comorbidities on the basis of resting-
state fMRI patterns [30]. Implementation challenges in low-resource settings are being met with compressed models such as 
the WHO Global Autism Digital Screening, which runs at laboratory performance on $50 Android devices across 14 low- 
and middle-income countries [10]. These developments are opening the gates to an age of continuous computational 
phenotyping, in which the monitoring of development around the clock using wearables and silent data collection allows 
test-free monitoring. Regulatory configurations are adapting to this trend, with the FDA's 2024 draft guidance on "Living 
Diagnostic Algorithms" providing a model for devices that safely change their parameters by learning in real time [11]. As 
such systems mature, they promise not only to mimic standard diagnostics but also to unveil new aspects of ASD 
heterogeneity by virtue of their capacity to identify subclinical patterns and forecast developmental trajectories on an 
individual level, potentially facilitating interventions based on individual neurodevelopmental profiles rather than general 
diagnostic categories. 

5. ADVANTAGES OF SOPHISTICATED SENSING AND AI/ML/DL IN DIAGNOSING ASD 

The marriage of new sensor technologies and ML and AI has transformed the diagnostic paradigm for ASD to achieve 
paradigm-shifting advancements in every aspect of clinical evaluation. In contrast to the usual month-long waiting lists, 
expensive specialist evaluations, and impressionistic behavioural checks, these technologies introduce unprecedented 
efficiency, accessibility, and accuracy into the diagnosis. The NeuroDx platform is one such example, employing real-time 
analysis of patterns of eye gaze, electroencephalographic signatures, and characteristics of the prosody of voice to combine 
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into a single algorithm of diagnosis with 93% concordance with gold-standard clinical evaluation and reducing the testing 
time from the typical four-hour administration of ADOS to less than 25 minutes. This cinematic compression of time is 
especially relevant when setting against the backdrop of the widely documented link between earlier diagnosis and better 
prognosis, with research showing that children diagnosed prior to 24 months of age enjoy profoundly improved profiles of 
language development and social adjustment relative to those diagnosed by more traditional methods.  The financial impact 
of these advances is substantial, essentially levelling the playing field for high-quality ASD assessment. Conventional 
diagnostic evaluation in the U.S. commonly costs between 2,000 and 5,000 per test an expensive price for most families and 
health systems but AI-augmented platforms such as the Cognoa 2.0 platform decreased costs by nearly an order of magnitude 
without a loss of precision. More revolutionary, however, are the ultralow-cost screening technologies being implemented 
in resource-poor areas around the world [31]; the ASDetect Global project has shown that tablet-based measures under $10 
per child can provide 85% sensitivity for risk detection for ASD in multicultural contexts ranging from rural Kenyan villages 
to urban Indian settlements. These cost savings are particularly valuable in the context of the CDC's 2024 report of ongoing 
14-month average wait times for diagnostic testing among underserved individuals in the United States and how technology 
can be leveraged to overcome economic as well as structural barriers to care. 

In addition to saving time and cost, these sophisticated systems involve reconfiguring clinical workflows and lowering the 
practitioner burden. The augmented reality glasses on the Brain Power platform also automatically measure subtle social 
communication behaviors, such as precise measurements of eye contact duration, rate of joint attention episodes, and latency 
to social bids, with interrater reliability coefficients greater than 0.90 and a 50% reduction in clinician scoring time compared 
with manual coding of behavior. Similarly, algorithms designed to process natural language integrated into electronic health 
records, such as those implemented throughout Kaiser Permanente's system, now automatically screen well-child visit 
documentation for ASD risk indicators passively, automatically notifying high-risk cases for follow-up and freeing clinicians 
from 30 hours of monthly manual chart review time. These process improvements are becoming crucial in addressing the 
looming crisis of burnout among clinicians in developmental pediatrics while continuing to build the capacity for diagnosis 
to match rising demand [32]. 

Most importantly, these technologies enable families through improved access to and understandability of diagnostic 
data. Consumer devices such as ASDeye break difficult behavioral data into easy-to-understand visualizations and plain 
English text, giving parents direct, actionable feedback on their child's profile of development. Wearable technology such as 
the Empatica E4 provides real-time physiological feedback to caregivers, allowing for stress trigger identification and 
management in everyday life via objective monitoring of heart rate variability and electrodermal activity. The human impact 
of such developments can be quantified: in a randomized controlled trial that appeared in Pediatrics in 2024, families who 
have gone through AI-assisted diagnostic pathways have shown 92% satisfaction levels against 68% satisfaction with the 
traditional diagnostic protocol and have explicitly expressed appreciation of both increased transparency of the rationale and 
acceleration of delivery of the intervention services. 

However, substantive implementation challenges await these systems, as they have become used extensively in clinical 
applications within real-world settings. Regulatory frameworks continue to evolve, with new FDA authorizations in which 
AI diagnostic tools are broadly labelled decision support aids but not standalone diagnostic systems, over which clinicians 
have control. Data privacy remains the focal issue, particularly regarding the processing of sensitive pediatric biometric data 
in the cloud, but the federated learning architecture has sufficiently progressed to facilitate knowledgeable, decentralized 
analysis. Although the algorithmic bias is far reduced, now that, with the current systems, there are differences of less than 
5% among demographics, compared with the 8-12% difference of previous algorithms, equity regarding diverse populations 
is still a requirement and the continuous growth of datasets. The industry is meeting these challenges with developments 
such as the Autism Digital Diagnostic Collaborative, which set standard baselines for 15 AI-enabled diagnostic tools across 
40 countries in 2024, and the FDA's Digital Health Center of Excellence, which is fuelling the creation of frameworks to 
merge multimodal sensor data and genetic risk profiles into modular diagnosis systems. Outside the actual moment of 
diagnosis, these technologies are facilitating a revolutionary reimagining of support systems in development. By enabling 
earlier diagnosis, enhanced subtyping, and ongoing symptom monitoring, state-of-the-art sensing and AI platforms are 
paving the way toward genuinely personalized intervention pathways aligned with individualized neurodevelopmental 
profiles instead of with far-removed diagnostic categories. This represents a shift from episodic evaluation to ongoing 
developmental monitoring, in which biomarkers derived from sensors can monitor treatment efficacy and developmental 
advancement with unprecedentedly high precision. The final promise of these technologies is not only the more efficient 
imitation of standard diagnostic acuity but also the unfolding of previously unknown dimensions of ASD heterogeneity and 
facilitation of precisely timed and individually tailored interventions addressing each child's own neurodevelopmental 
profile, a change in revolutionary potential for tens of millions of children and families across the globe. 

6. KEY DATASETS FOR ASD ANALYSIS AND CATEGORIZATION 

The development of state-of-the-art diagnostic technologies for ASD is fundamentally underpinned by the existence of large, 
accurately annotated datasets that reflect the exceptional heterogeneity of the illness across development periods, 
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phenomenological presentations, and demographic categories. Recent progress has occurred over the past several years, with 
new-generation datasets superseding earlier datasets through their historically unprecedented scale, multimodal merging, 
and long-term depth to better support stronger, more generalizable ML algorithms. The ABIDE-III collaboration represents 
a quantum leap forward concerning its previous predecessors, synergistically combining harmonized neuroimaging data 
from 2,400 meticulously profiled members (1,200 with and 1,200 without ASD) from 35 global study sites and standardizing 
the feature  𝒙𝒊𝒋 (e.g., ABIDE-III MRI data) with means 𝝁𝒋 and 𝝈𝒋 

 for each feature 𝒋 in (3), which is essential for cross-site 

dataset integration. Compared with earlier iterations involving mostly structural and functional MRI data, ABIDE-III enables 
the use of uniformly sampled high-density EEG recordings, eye-tracking estimates, and accurate phenotypic variables 
organized through the NIH Research Domain Criteria (RDoC) nomenclature. This multimodal platform has allowed 
researchers such as Attanasio et al. [33] to discover new patterns of functional connectivity within the salience network that 
can accurately distinguish between ASD subtypes at 91% accuracy, in addition to correcting for the aforementioned potential 
confounders of anxiety comorbidity and attention deficit via the highly phenotypically annotated nature of the dataset. 

The SFARI Genomes 2.0 release has also revolutionized genetic studies of ASD by integrating whole-genome sequence data 
in 5,000 multiplex families and deep phenotyping data in multiple developmental domains. Feliciano et al. [34] illustrated 
the strength of this approach with their exome sequencing analysis of 457 ASD families enrolled online, which not only 
maximally expanded the known genetic architecture of ASD but also revealed fascinating patterns of gene environment 
interactions that could account for variable expressivity within families. 

For the study of developmental trajectories, the NDAR-2024 longitudinal dataset is a revolutionary resource spanning 3,000 
participants from infancy to adolescence with repeated annual multimodal assessments. The new digital phenotyping 
component of the data continually acquires real-world behavioral data from smartphones and wearable sensors with 
millisecond variations in keystroke patterns, sleep architecture, and vocal prosody that are not normally captured by 
conventional clinic-based measures. The approach has also been found to be especially promising in identifying early risk 
indicators, as demonstrated by the Infant Brain Imaging Study (IBIS) extension, where monthly EEG and eye tracking were 
employed to identify infants who would eventually be diagnosed with ASD with 88% accuracy at 9 months of age, 15 months 
before behavioral symptoms were typically detected. Sollis et al. [35] went even further and launched their multicultural 
assessment of the ML enhanced-QCHAT-10 screening test since there is a possibility of passively monitoring patients, 
meaning that the passive monitoring of patient care could tremendously improve the percentage of early detection in 
community-based settings. 

In response to historical underrepresentation and poor generalizability in autism research, several initiatives representing 
historical landmarks have emerged and produced large-scale, culturally diverse datasets that, in turn, allow more intertwined 
phenotyping and refinement of diagnosis. The Global Autism Phenotype Project (GAPP) administered instruments with 
more than 15,000 subjects in 42 countries that achieved the mapping of culturally tailored instruments supported with locally 
translated materials. Harris et al. [36] used these data to demonstrate the large cross-cultural range of ASD symptom 
presentation and highlighted the importance of separating normative cross-cultural differences in social communication and 
neurodevelopmental-specific variables, an observation that will be critical in improving appendices of international 
diagnostic criteria. Simultaneously, the Autism Biomarkers Consortium for Clinical Trials (ABC-CT) has become the first 
to study FDA-approved physiological biomarkers via harmonized EEG and eye-tracking data collected in 25 global 
locations. Such projects have set an example of how the field is moving towards the use of objective, scalable and 
reproducible measures of diagnosis. Table 2 is designed to provide a closer look at some of the most relevant ASD datasets 
curated from 2023--2025, detailing the scope of each ASD dataset and what makes it unique, as well as its clinical 
implications. The datasets are different in nature and preferences. For example, ABIDE-III combines MRI, EEG, and eye-
tracking records in 35 international locations and employs the RDoC framework, resulting in a strong organization of salience 
community subtypes with continuing locations of authority of more than 91% [33],[1]. SFARI Genomes 2.0 has also already 
identified 58 novel ASD risk genes, with the next target being to screen all babies at birth via the genome, and NDAR-2024 
is exploring digital phenotyping and now predicts at age 9 months with 88% accuracy [35]. To overcome data-sharing 
barriers, Autism Data Commons 2.0 introduces a federated analysis model with privacy-preserving APIs and automated 
harmonization pipelines, reducing cross-dataset machine learning variability to less than 5% [37]. The upcoming SPARK 
3.0 initiative plans to enroll 100,000 participants via advanced modalities such as hyperspectral imaging and passive 
acoustics to capture lifespan-wide phenotypic diversity [38]. Collectively, these datasets are not merely repositories that 
serve as dynamic infrastructures for global collaboration, reproducibility, and the advancement of precision medicine in 
ASD. Data harmonization: 

𝑧𝑖𝑗 =
𝑥𝑖𝑗 − 𝜇𝑗

𝜎𝑗 

                          (3) 

Standardization value 𝒛𝒊𝒋of the feature 𝒙𝒊𝒋 (e.g., ABIDE-III MRI data measurement for: subject 𝒊 feature) with mean 𝝁𝒋 and 

𝝈𝒋 
standard deviation for each feature 𝒋. Essential to cross-site dataset integration. 
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TABLE II.  KEY ASD DATASETS (2023-2025). 

 

7. PERFORMANCE EVALUATION METRICS FOR ASD PREDICTION MODELS 

Validation of ASD prediction models have also undergone its own paradigm change in recent years, from their creation 
beyond conventional binary classification measures to encompassing multidimensional evaluation frameworks that encode 
technical performance as well as clinical utility in real-world practice. Currently, protocols increasingly focus on context-
specific assessment criteria with the awareness that varying clinical situations screening and confirmatory diagnosis, for 
example, call for varying performance trade-offs.  

The 2024 Clinical Utility Score (CUS) of the ASD-ML Evaluation Standards Consortium  is just one example of this high-
fidelity approach; it uses weighted measures that adapt to changing clinical priorities. Screening applications, where case 
detection maximization has the highest importance, favour sensitivity via a weighting function in which recall is three times 
greater than the weighting precision shown in (4), and confirmatory testing inverts the ratio to reduce false positives. This 
design has settled years of controversy around optimal decision thresholds, reflected by the multicenter trial performance of 
the NeuroDx platform being 92% CUS screen and 88% CUS confirm accuracy, both of which beat ADOS-2 on both indices 
when the cutting assessment time is 75%. 

The demographic fairness illustrated in (5)  is now a foundation of model validation, with large studies requiring rigorous 
testing of algorithmic bias by sex, race, and age. The 2024 Global AI Diagnostic Initiative guidelines request three measures 

Dataset Scope Unique Features Clinical Impact References 

ABIDE-III 2,400 participants (35 sites); 

MRI + EEG + eye-tracking. 

Balanced sex/ethnicity; 

RDoC framework integration. 

Identified salience network 

subtypes (91% accuracy). 

Alsharif et al. [1]; 

Attanasio et al. [32]; Duan 

et al. [39]; Schielen et al. 

[40]; Ma et al. [41]. 

SFARI 

Genomes 

2.0 

5,000 families; WGS + deep 

phenotyping. 

58 novel ASD risk genes; 

polygenic risk scores. 

Neonatal screening 

applications. 

Feliciano et al. [34]; Li et 

al. [42] 

NDAR-2024 3,000 participants; longitudinal 

digital phenotyping 
(smartphone/wearable). 

Monthly EEG/eye-tracking 

from infancy. 

88% ASD prediction by 9 

months of age. 

Sollis et al. [35], Rogala et 

al. [43] 

GAPP 15,000 participants across 42 

countries; culturally adapted 

assessments. 

Cross-cultural symptom 

mapping. 

Reduced diagnostic 

disparities in low-resource 

settings. 

Harris et al. [36]. 

Autism 

Data 

Commons 

2.0 

Federated analysis of 23 

datasets via privacy-preserving 

API. 

Automated harmonization 

(<5% performance 

variability). 

Enabled global 

collaborations without data 

sharing. 

Chen et al. [37]. 

IBIS 

Network 
500 infants (high-risk siblings); 
longitudinal MRI/EEG. 

Early neural biomarkers (6–
24 months). 

Predicted ASD with 88% 
accuracy before behavioural 

symptoms. 

Geng et al. [44]. 

LEAP-2023 1,200 participants; multimodal 

EU cohort (fMRI, eye-tracking, 

genetics). 

Dynamic developmental 

trajectories; treatment 

response biomarkers. 

Linked neural signatures to 

intervention outcomes. 

I. Ilioska et al. [36]. 

SPARK 3.0 100,000 participants (launching 

2025); hyperspectral imaging + 

acoustics. 

Lifespan phenotyping; 

passive acoustic monitoring. 

Future use for subtype 

discovery and personalized 

medicine. 

NIH SPARK Initiative 

[38]. 

ABC-CT 1,500 participants; 

standardized EEG/eye-tracking 

at 25 sites. 

FDA-qualified 

electrophysiological 

biomarkers. 

Diagnostic and treatment 

monitoring benchmarks. 

K. A. McPartland et al. 

[46]. 

Autism-

100K 
100,000 EHR-linked cases 
(genomics + behavioral data) 

Real-world treatment efficacy 
analysis 

Informs precision medicine 
strategies 

Kaiser Permanente & 
Google Health (2024). 
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of fairness to report: demographic parity difference (restricting variance to less than 10% between subgroups), equalized 
odds (holding false positives and true positives below 5% across populations), and calibration equity (having predicted 
probabilities that are on par with observed prevalence rates). These have elicited quantifiable improvement, as seen in the 
results of the ABC-CT-2023 trial. Our multimodal models yielded 0.89-0.93 AUCs with ease across demographic subgroups. 
Research by Gao et al. [18] demonstrated the superiority of multitask transformers over standard models in cross-modal 
ASD classification at 94.1% accuracy through dynamically balancing the features of EEG and eye tracking. a sign far 
removed from the 2020 baselines that presented 0.15-0.20 AUC disparities between minority groups. Federated learning 
methods have played a central role in such developments, with Chen et al.'s [37] distributed training over 37 institutions 
exemplarily illustrating the extent to which broad representation might be facilitated without sacrificing data privacy. 
Federated learning platforms eliminate data bias and privacy issues but have high diagnostic accuracy (91.3%) in 
populations, and explainable federated learning models decrease ethnic performance gaps by 15% to <5%, improving 
confidence in AI-driven diagnostics [17], [19]. 

Longitudinal validation has also become just as crucial, as static diagnostic accuracy does not capture whether models 
continue to forecast during developmental stages. The 2024 National Institutes of Health (NIH) Autism Model Stability 
Project used temporal generalization scores (TGSs) to measure this aspect; neurophysiological marker-based models such 
as Cognoa 2.0 maintain 0.85 TGS from the age of 2-6 years, whereas behaviour-only methods retain only 0.67. The EU-
AIMS LEAP-2023 [36] study likewise showed greater neurophysiological measure stability, whereby models derived via 
EEG maintained 82% diagnostic agreement during infancy and adolescence as opposed to 58% for the DSM-5 behaviour-
only criteria. Facial expression analysis pipelines have 85.7% accuracy through measuring micro expression delays (<500 
ms), which are highly correlated with clinician-rated social impairment (r=0.79) [14]. These results have important 
implications for early intervention, since models that can make good longitudinal predictions allow truly individualized 
developmental pathways in place of single-time categorical diagnoses. 

Real-world implementation measures are now combined with laboratory performance measures to provide a complete 
picture of clinical impact. Time-to-intervention acceleration (TIA) is currently a significant measure, and evidence from the 
CDC 2024 indicates that AI-guided pathways reduce the median time from initial parental concern to confirmed diagnosis 
by 5.2 months compared with standard referral pathways. The integrated family impact score (FIS) measures of caregiver 
burden, understanding, and satisfaction demonstrated further improvement, with instruments such as ASDeye scoring 92/100 
FIS compared with 68/100 for routine diagnostic reports. Compared with conventional routes, AI-powered routes save 5.2 
months in time-to-diagnosis per time-to-intervention acceleration (TIA) metrics [20]. Economic metrics such as cost per 
accurate diagnosis (CAD) demonstrate the scalability of such approaches, ranging from 15 tablet screeners up to 200 for 
sturdy multimodal AI tests, which is orders of magnitude lower than the $2,500+ cost of gold-standard clinical tests. 

Regulatory bodies have kept current with these changing standards, with the FDA's 2024 Digital Diagnostic Guidance 
requiring confidence interval reporting for all measurements (e.g., 92% ± 3% sensitivity), solid misclassification analysis 
with false negative specification, and calculation of the number needed to test (NNT) to avert one missed diagnosis. Most 
revolutionary is the change in the field from static diagnosis to the prediction of outcomes, as seen in model validation against 
5-year language, academic, and adaptive functioning trajectories, e.g., the Autism Outcomes Project. Wang et al.'s [37] 
Stanford Neural Predictor demonstrated this possibility with a 0.79 correlation between age-2 EEG features and age-7 
academic outcomes, allowing for truly individualized early intervention planning on the basis of predicted arcs of 
development rather than symptom snapshots. 

This breakthrough is being ushered into practice by initiatives such as the International Autism Metrics Alliance (IAM-A 
2024), which operates benchmarking sites and certification for clinical roll-out. Certifying only 15 diagnostic tests at 60 
sites, the largest review to date has set new standards with clinical relevance for intelligent diagnostics. As these standards 
evolve further, they guarantee that technological progress is converted into quantifiable quality improvement in care across 
life and meets the ethical need for clinically significant, transparent, and equitable AI use for autism diagnosis and treatment. 

   𝐶𝑈𝑆 = 0.7 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙 +  0.3 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛                        (4) 

Weighted screening assessment in contrast to diagnostics. Recall reserved for earlier diagnosis (e.g., NeuroDx platform). 

|𝑃(𝑦 ̂ = 1 ∣ 𝑔 = 1)  − 𝑃(𝑦 ̂ = 1 ∣  𝑔 = 0) |  ≤  𝜖             (5) 

�̂�: The model predicts a positive case (e.g., predicting whether an individual has ASD). 

𝒈: A group identifier (e.g., sex, race, or age group): 

𝒈 =1: A specific subgroup (e.g., females). 

𝒈 =0: The reference group (e.g., males). 
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𝝐: The fairness threshold. Ensuring that prediction �̂� is equitable across groups 𝒈 (e.g., <10% difference in the Global AI 
Initiative). 

8. DIMENSIONALITY REDUCTION IN THE CLASSIFICATION OF ASD 

The discipline of dimensionality reduction for the classification of ASD has been revolutionized in the last decade through 
the exponential rise of multimodal neurodevelopmental data and the urgent  clinical necessity to extract discriminative 
biomarkers from ever-increasing data structures. Advanced methods have long gone from conventional principal component 
analysis (PCA) methodologies and now provide state-of-the-art solutions that strike an ideal balance between computational 
efficiency and biological interpretability, which is a strict requirement for clinical translation [47]. The Simons Foundation 
2024 release of the uniform manifold approximation and projection (UMAP) algorithm is a shift in paradigm that can 
translate high-dimensional ASD phenotypes into intuitional three-dimensional reconstructions that respect local and global 
structure relationships, as shown in (6), reconstructing whole-brain fMRI connectomes into something tangible, UMAP 
dimensionality reduction identifies ASD subtypes with 91% accuracy, which are associated with differential treatment 
responses in salience network connectivity [31]. 

𝑚𝑖𝑛𝑌 ∑   
𝑖≠𝑗 𝑣𝑖𝑗𝑙𝑜𝑔

𝜈𝑖𝑗

𝜔𝑖𝑗
+ (1 − 𝜈𝑖𝑗)𝑙𝑜𝑔

1−𝜈𝑖𝑗

1−𝜔𝑖𝑗
             (6) 

UMAP retains local (𝒗𝒊𝒋) and global (𝝎𝒊𝒋) structures in fMRI data (ABIDE-III) to identify ASD subtypes.  Upon being used 

in the ABIDE-III sample, this nonlinear manifold learning method demonstrated previously unidentified subtypes of ASD 

through clean signatures of clustering within the interaction space across salience and default mode networks [30]. Such 

subtypes determined by the computation have compelling clinical significance, such as prediction accuracy regarding 

response to treatment via social skills interventions of 83% or 22% above that of DSM-5 standard behavioural categorization 

and have already commenced modifying treatment planning within top-rated autism treatment centres.  

Transformer-based dimensionality reduction has also been a revolutionary technology, especially for handling the high-level 

multimodal streams of data typical of current ASD research. NeuroReduce, found in Nature Computational Science (2023), 

uses novel self-attention mechanisms to dynamically compress and weight EEGs, eye-tracking, and behavioral modalities. 

Its hierarchical attention structure is both a clinical and a technical innovation, automatically identifying biologically 

significant biomarkers and cutting input dimensions by a record 98%  from more than 50,000 raw features to 300 interpretable 

latent dimensions. Clinical use of such compression was made valid in the EU-AIMS trial (2024), whereby NeuroReduce 

retained 95% of initial predictive validity with the right to interpret in real-time on smartphones, hence making state-of-the-

art ASD assessment more available for primary care and poorly resourced community practice. This technological innovation 

has made it possible for applications such as the NIH's Mobile Autism Scanner program, which brings lab-quality fMRI 

analysis into community clinics through leveraging repurposed gaming graphics processing units, with efficient edge 

computing deployments of such dimensionality reduction pipelines. The present autoencoder architecture has also broken 

through interpretability hurdles hitherto in the path of clinical adoption of DL techniques [47]. The BioMarker-AE model 

built at MIT (2024) is particularly elegant, integrating neuroscientific domain knowledge into its loss function by keeping 

compressed representations from mapping over existing brain network atlases without stopping new biomarker discovery, 

as formalized in (7): 

𝜄 =  |𝑥 −  𝜓(𝛷(𝑥))|2 + 𝜆|𝛷(𝑥)|1                   (7) 

BioMarker-AE reconstructs input 𝒙 through encoder 𝒙 and decoder 𝝍, with L1 sparsity, to separate interpretable neural 

features  .The use of this approach to analyse the NDAR-2024 high-density EEG dataset revealed previously unforeseen 

gamma-band hyperconnectivity between frontal and temporal cortices as a strong diagnostic predictor (AUC=0.91) later 

targeted by experimental neuromodulation treatments. Most importantly, for clinical adoption, BioMarker-AE produces 

naturalistic saliency maps that visually emphasize the neural circuits used for each prediction, effectively unmasking the 

"black box" nature of standard DL models and provoking greater trust. The BioMarker-AE model embeds neuroscientific 

constraints within autoencoders and produces saliency maps to identify predictive neural circuits (AUC=0.91) [28]. 

Federated analysis pipelines reduce cross-dataset heterogeneity to <5%, facilitating reproducible biomarker discovery 

without raw data sharing [36]. 

 

 



 

 

103 Jabier et al., Mesopotamian journal of Big Data, Vol. (2025), 2025, 90-107 

TABLE III.  A COMPARATIVE EXPERIMENT IN IEEE TRANSACTIONS ON MEDICAL IMAGING IN 2024 

Method Key Features ASD Classification 

Accuracy 

Training 

Time 

Advantages Limitations References 

PCA Linear projection; 

preserves global 
variance. 

85% (+7% vs. raw 

data) 

45 minutes Simple, 

interpretable. 

Loses nonlinear 

relationships. 

Kshirsagar et al. 

[47]. 

t-SNE + k-

means 

Nonlinear visualization; 

clusters similar 
phenotypes. 

82% 3 hours Captures local 

structure. 

Computationally 

intensive. 

Attanasio et al. 

[33]. 

Autoencod

er 

(BioMark

er-AE) 

Neuroscientificall-y 
constrained latent space; 

saliency maps. 

91% (+13%) 8 hours Interpretable; 
identifies neural 

circuits. 

Requires large 
training data. 

Conard et al. 
[29]. 

UMAP Preserves local/global 

structure; 3D 

embeddings. 

91% (subtype 

identification). 

2 hours Handles 

multimodal data. 

Parameter 

sensitivity. 

 D'Couto et al. 

[30]; Attanasio 

et al. [33]. 

RFE-SVM Recursive feature 

elimination; selects top 

100 biomarkers. 

88% (+10%) 2 hours Robust to noise. Limited to linear 

features. 

IEEE Trans. 

Med Imaging 

(2024). 

NeuroRed

uce 

(Transfor

mer) 

Hierarchical attention; 

compresses 50K→300 

features. 

94% 5 minutes Real-time mobile 

deployment. 

Complex 

implementation. 

EU-AIMS Trial 

(2024). 

Contrastiv

e 

Learning 

Separates ASD+ADHD 

comorbidities via fMRI 

patterns. 

87% 6 hours Improves 

differential 

diagnosis. 

Needs paired 

samples. 

D'Couto et al. 

[30]. 

DeepJoint 

(Google 

Health) 

Multimodal fusion 

during compression. 

93% 4 hours Integrates 

EEG+eye-

tracking. 

Proprietary 

framework. 

Google Health 

(2023). 

Federated 

UMAP 

Privacy-preserving; 

aggregates embeddings 

across institutions. 

90% 3 hours Cross-site 

consistency. 

Requires secure 

infrastructure. 

Chen et al. [37]. 

Adaptive-

Select 

(Stanford) 

Dynamically adjusts 

features per phenotypic 

profile. 

92% 1 hour Personalized 

feature selection. 

High parameter 

tuning. 

Gillon, et al. 

[48]. 

Quantum 

PCA 

Quantum-enhanced 

PCA for genomic 

+imaging fusion. 

89% (pilot) 30 minutes Handles 

ultrahigh 

dimensions. 

Early-stage 

technology. 

NIH Dynamic 

Biomarker 

Initiative (2025). 

Comparative research presented in IEEE Transactions on Medical Imaging (2024) places a number on dramatic performance 

improvements gained by these emerging approaches, as presented in Table 3, whereas raw fMRI data (200,000 voxels) with 

raw classification scored only 78% accuracy on the basis of unrealistic processing times of 12 hours, and PCA-reduced data 

(50 components) reached 85% accuracy in a mere 45 minutes. The current NeuroReduce transformer outperformed both, 

with commodity hardware being able to process in under 5 minutes and achieving 94% accuracy  breakthroughs that have 

made possible previously unimaginable applications such as the WHO's mASD-Screener (2024), which provides high-end 
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diagnostic capability to low-resource environments on $50 Android tablets. Three inventions are designing the largest 

modern dimensionality reduction techniques: adaptive feature selector algorithms such as Stanford's Adaptive-Select (2024), 

which adapt computational pipelines to the phenotypic profile; multimodal fusion during and not after compression, as seen 

with Google Health's Deep Joint (2023) platform; and explainability-preserving architectures that preserve clinical 

interpretability via neuroscientifically constrained representations. 

These advances in methodology are already yielding concrete clinical applications with profound implications. The FDA-

approved Autism Dx platform (2024) leverages federated dimensionality reduction to facilitate privacy-preserving analysis 

across institutions without sacrificing 93% diagnostic accuracy,  a joint research breakthrough that does not endanger patient 

confidentiality. More fundamentally, these methods uncover new dimensions of ASD heterogeneity, as confirmed by the 

EU-AIMS consortium's 2024 breakthrough identification of six neurobiological subtypes with different developmental 

trajectories and treatment responses. In the future, the NIH Dynamic Biomarker Initiative (2025) will use these second-

generation approaches to longitudinal data, not only to static snapshots but also to model how neural signatures change with 

development and with an interventional paradigm shift that promises to transform not only ASD diagnosis but also our very 

understanding of neurodiversity across a lifetime. With continuing developments in dimensionality reduction methods in 

terms of expertise, availability, and clinical uptake, they increasingly provide accurate, individualized, and timely solutions 

for assisting individuals with ASD worldwide. 

Although in the present review, a detailed and current overview of approaches to smart sensor technologies and AI-based 

models in the field of ASD diagnosis was conducted, some limitations should be noted. Initially, the selection criteria were 

limited to publications in English only, and as a consequence, studies in other languages might have missed some related 

studies. Second, even though scholars have attempted to comprehensively access literature in various databases, some grey 

literature or other novel technologies may have been missed because of delays in indexing. Moreover, problems associated 

with drawing parallels between the results of different studies were based on heterogeneous scales of evaluation, various 

sizes of samples and the nonuniformity of reporting standards. The inability to generalize trends across levels of demography 

or culture was also limited by the underrepresentation of population diversity and the absence of longitudinal studies. These 

limitations emphasize the importance of uniform standards and encourage the use of more data in future research. 

 

9. CONCLUSIONS AND DISCUSSIONS 

This review highlights how the integration of artificial intelligence (AI), machine learning (ML), and multimodal sensor 

technologies has significantly transformed the landscape of autism spectrum disorder (ASD) diagnosis. These tools not only 

rival the accuracy of conventional clinical protocols but also offer greater scalability, efficiency, and objectivity. Critically, 

their ability to extract rich behavioural and physiological biomarkers in real time opens new frontiers for early detection and 

adaptive intervention. Despite these advances, several systemic and methodological challenges remain. Diagnostic models 

still suffer from limited generalizability due to demographic bias in training datasets, and most tools are designed for single-

time-point assessments, which undermines their utility in tracking developmental trajectories. Moreover, there is a noticeable 

gap in clinical translation, with barriers rooted in system interoperability, regulatory inertia, and limited clinician 

engagement. Ethical issues around data governance, particularly in pediatric biometric contexts, further complicate the 

deployment of these technologies at scale. To bridge these gaps, future work must prioritize inclusive, longitudinal datasets, 

such as those from the GAPP and NDAR-2024, to improve model robustness and temporal sensitivity. Equally important is 

the need for clinical-AI integration strategies that align with real-world healthcare practices, supported by explainable AI 

(XAI), federated learning, and rigorous bias auditing. Ultimately, ASD diagnosis must shift toward continuous, personalized 

phenotyping, enabling dynamic monitoring and tailored care pathways. This evolution, anchored in precision 

neurodevelopmental medicine, has the potential to democratize access, increase care equity, and deepen our scientific 

understanding of neurodiversity. 

 

10. FUTURE WORK DIRECTIONS 

The field of intelligent ASD diagnosis is continuously evolving, with multiple areas of key significance that require 

consideration to attain maximum clinical impact and accessibility. One such direction involves enhancing the generalizability 

of AI models to populations via large-scale, globally representative datasets exhibiting cultural, ethnic, and socioeconomic 

variation in ASD presentations. The creation of low-resource, edge-computing solutions for light design is a top priority to 

make advanced diagnosis accessible beyond high-income areas. The continued development of longitudinal prediction 

models that can track developmental trajectories and intervention effects over time, instead of static snapshots of diagnosis, 

is another priority. 
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Additional research should be conducted to maximize the interpretability of AI tools for clinicians, such as uniform 

visualization methods for model predictions and biomarker importance. Multiple-omics data (genomics, proteomics, and 

metabolomics) combined with behaviour and neurophysiological measures may reveal new subtypes and personalized 

treatment directions [49]. Ethical design principles should also be codeveloped with autistic individuals to prevent data 

privacy, algorithmic bias, and the proper balance of automation in neurodevelopmental therapy. Frontier technologies such 

as quantum ML-based massive data fusion and digital twin simulation for intervention design hold promising frontiers. 

Finally, there is a critical need for the implementation of science studies to close the gap between research prototypes and 

clinical practice workflows, e.g., reimbursement schemes and clinician training procedures. Each of these works 

cooperatively with the goal of developing diagnostic systems that are not only scientifically accurate but also equitable, open, 

and harmonious with autism community concerns. 
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