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A B S T R A C T 
Traditional convolutional neural networks (CNNs) face significant limitations in medical imaging when 

detecting small, spatially variable objects such as kidney stones, primarily due to their inability to 
preserve pose information and spatial correlations through max pooling operations. While previous 

CNN-based studies achieved approximately 93% accuracy in kidney stone detection, they struggled 

with the precise localization of small or partially obscured stones, creating a critical research gap in 

automated urological diagnostics. This study develops and evaluates a capsule network (CapsNet) 

framework that leverages dynamic routing and vector-based capsules to increase kidney stone 

localization accuracy in computed tomography (CT) images while maintaining spatial coherence and 

reducing false positives. The CapsNet model incorporates convolutional layers, primary capsules, and 

stone capsules via dynamic routing algorithms. The approach was systematically evaluated via a 

publicly accessible kidney stone CT dataset from the Mendeley repository, comprising 512 anonymized 

abdominal CT slices preprocessed to 256×256 pixels. The dataset was partitioned into training (70%), 

validation (15%), and test (15%) sets. The performance was compared against that of a baseline CNN 

under identical conditions using 50 epochs and the Adam optimizer. The results demonstrate CapsNet's 

superior performance across all the metrics: 96.5% accuracy, 96% precision, 97% recall, 96% F1 score, 

0.93 Dice coefficient, and 0.89 IoU, significantly outperforming the CNN baseline (92% accuracy, 0.84 

Dice coefficient, 0.78 IoU). CapsNets enhance kidney stone localization and generalization by 

preserving spatial and pose information, improving diagnostic accuracy in medical imaging. 

 

1. INTRODUCTION 

Millions of people throughout the world suffer from kidney stone illness. Accurate identification and location of kidney 

stones is essential for diagnosis, treatment planning, and recurrence prevention [1]. Among the available imaging techniques, 

including computed tomography (CT), ultrasonography (US), and X-ray, CT is considered the gold standard because of its 

high sensitivity and specificity[2] [3] [4]. Nevertheless, manually interpreting medical images time-consuming, error-prone, 

and heavily dependent on the skill of radiologists [5]. Artificial intelligence has revolutionized medical image analysis. CNNs 

have shown considerable promise in tasks such as object detection, segmentation, and classification across a range of medical 

imaging applications [6] [7]. However, their limitations in handling pose variations and spatial hierarchies hinder the accurate 

localization and detection of small, irregular shaped objects like kidney stones. As a remedy for these drawbacks, CapsNets 

have attracted much attention as a solution to these constraints[8] [9]. It preserves spatial links and recognizes part-whole 

hierarchies [10]. CapsNets are especially well suited for applications that demand high accuracy because they use dynamic 

routing to maintain feature orientation and placement [11],[12]. 

Our study aims to develop a deep learning framework that employs capsule networks for precisely identifying kidney stones 

via medical imaging. The proposed method seeks to improve localization precision and reduce false positives by leveraging 

the attributes of CapsNet to maintain spatial coherence. The methodology is assessed via a publicly accessible dataset of 

kidney CT scans, with findings compared with those of leading CNN-based techniques to validate the efficacy of the 

proposed system  
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2. RELATED WORK 

Recently, researchers have highlighted the importance of integrating AI into medical imaging. Some of these studies focused 

on identifying and classifying kidney stones via traditional image processing methods, but they often struggle to identify 

small or spatially irregular objects accurately. Despite extensive research on deep learning methods for finding and 

classifying kidney stones, a thorough search of major scientific databases such as PubMed, Scopus, and IEEE Xplore 

revealed no studies that specifically utilized capsule networks for this purpose. The literature has focused predominantly on 

traditional convolutional neural network (CNN) designs, such as the following: 

 Alper et al. [13] used a CNN in a retrospective evaluation of 2,959 unenhanced CT scans from 455 patients with kidney 

stones. Conventional CT achieved test accuracies of 78% (axial), 72% (coronal), and 93% (sagittal) in detecting kidney 

stones, with no reported F1 scores exceeding 90%. 

Bouzon et al. [14] applied a low-complexity CNN with just four convolutional layers to coronal CT images of 1,799 kidney 

stones. Under an 80/10/10 /val/test split, a test accuracy of 97.2% and an F1 score of 97.6% were achieved. However, the 

lightweight network excels in slice-level classification, which means that it does not preserve the interslice spatial context. 

Caglayan et al. [15] In this retrospective study of 455 patients (405 with stones and 50 without stones) who underwent 

unenhanced CT, the researchers evaluated 2,959 images across the axial, coronal, and sagittal planes via an xResNet50-

based CNN. The model training accuracy exceeded 97% across all planes (98.2–99.1%), but the testing accuracy ranged 

from 78–70% (axial), 63–72% (coronal), and 85–93% (sagittal) depending on the stone size. 

This study seeks to address this deficiency by utilizing the spatial encoding features of CapsNet to improve the localization 

of kidney stones in CT images. The suggested strategy enhances the strengths and mitigates the limitations highlighted in 

other research, providing a more dependable and interpretable instrument for clinical decision-making in urology and 

radiology. 

 

3. CAPULE NEURAL NETWORKS IN MEDICAL IMAGING 

CapsNets are classified as a form of deep learning system that captures part-whole relationships to enhance robust pattern 

recognition[16], [17]. This signifies a notable progression over traditional CNNs by mitigating one of the CNN’s primary 

shortcomings in the degradation of spatial correlations among features [18]. CapsNets use neuron clusters (capsules) to 

encode the probability and pose (location, orientation, and size) of a feature [17]. This enables the model to comprehend 

the spatial configuration of objects with their components in a more effective manner [19],[20]. Conventional CNNs with 

procedures such as max pooling, which removes location information [21]. CapsNet employs dynamic routing by 

agreement, enabling lower-level capsules to selectively transmit outputs to higher-level capsules based on prediction 

coherence. [22]. 

Accurate localization and structural recognition are essential for the detection of lesions, tumors, and kidney stones[23]. 

These structures can differ in form, size, and orientation. Unlike convolutional neural networks (CNNs)[24]. It may 

misclassify or overlook objects owing to spatial irregularities[25]. CapsNets preserve spatial awareness and provide 

enhanced generalizability on limited datasets. Consequently, utilizing CapsNets for kidney stone identification improves 

detection accuracy and reduces false positives, making them an ideal choice for medical imaging applications that need 

precision and reliability. 

 
 

4. METHODOLOGY 

The approach for developing and testing a capsule network system for precisely identifying kidney stones is described in 

this section. This methodology includes four main stages: data preparation, image preprocessing, model engineering, and 

evaluation metrics. 

 

4.1 Data Preparation 

The dataset used in this investigation was sourced from the kidney stone CT dataset accessible in the Mendeley data 

repository [26]. The dataset comprises anonymized abdominal CT slices obtained from individuals diagnosed with 

nephrolithiasis. The photos are grayscale and exhibit varying resolutions, although the data are organized appropriately for 

binary classification and localization tasks. To ensure consistency, all pictures were reduced to 256 × 256 pixels, and labels 

were transformed into binary masks as necessary to provide pixel-level assessment measures, including the Dice coefficient 

https://pubmed.ncbi.nlm.nih.gov/?term=%22Caglayan%20A%22%5BAuthor%5D
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and Intersection over union (IoU). The dataset was partitioned as follows: training set: 70% of the data (358 photos), 

validation set: 15% (77 images), and test set: 15% (77 images). The division was detailed to preserve the ratio of positive 

and negative instances throughout all the subgroups. Some samples of images are shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

                                                           (a)                                                                                                            (b) 

Fig. 1: Samples of the Kindey Stone Dataset: (a) nonstone, (b) stone 
 

4.2 Image Preprocessing 

Before feeding images into the network, a sequence of preprocessing procedures is implemented to improve image quality 

and diminish noise: normalization and contrast enhancement, acoustic attenuation, and data augmentation[25]. The 

following figure shows the preprocessing of a sample image. 

 

 

 

 

 

 

 

Fig. 2: Preprocessing procedures 

 

4.3 Capsule Network Architecture  

The foundation of the proposed system is a tailored capsule network influenced by the original design presented by Sabour 

[17]. The model consists of the following layers: 

• Convolutional Layer: Extracts fundamental characteristics from the input CT picture  via a 9x9 kernel to capture 

high-level edges and texture information. 

• Primary Capsules: Clusters of convolutional units are transformed into vector capsules, which encapsulate an 8-

dimensional feature vector. These capsules encode low level patterns such as shape fragments, edge groupings 

and potential object contours. 

• Digit Capsules (Stone Capsules): Advanced capsules indicate the existence and positioning of kidney stones. Each 

capsule in this layer outputs a 16-dimensional vector that encodes both the probability and pose the information 

of a potential stone. 

• Dynamic Routing: The routing-by-agreement technique facilitates communication between lower and higher level 

capsules based on consistent feature concordance, enabling the model to preserve pose and spatial linkages. 
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The margin of the loss function promotes accurate categorization while mitigating erroneous predictions. Localization maps 

are generated from the activation patterns of the capsules, indicating the stone's position within the picture. 

 
 

 
Fig. 3: Capsule network architecture 

 
where 

uj|i Prediction vector from capsule i to capsule j 

bij Logit (initial log probability) between capsule i and capsule j , updated during routing 

cij Coupling coefficient (output of softmax) indicating how much capsule i contributes to capsule j  

sj Total input vector to capsule j (weighted sum of predictions) 

vj Output vector of capsule j after squash function (encodes presence and pose) 

aij Agreement score (dot product) between vj and uj|i 

Wij Weight matrix used to transform uj to prediction 

 

5. TRAINING CONFIGURATION 

A baseline CNN model is constructed with comparable parameters to measure the performance enhancement provided by 

CapsNet. This facilitates an equitable assessment of localization accuracy, detection precision, and noise and picture 

distortion robustness. Both models are trained on an identical dataset with the same training methodologies and learning 

rates. The capsule network and the CNN baseline were trained under the same conditions to guarantee a fair comparison. 

The subsequent parameters employed for both models shown in Table 1. 

TABLE I: TRAINING PARAMETERS 

 

Epochs: 50 Loss Function For CNN: Cross-Entropy Loss 

Batch Size: 16 Cross-Validation: 5-Fold Cross Validation applied to improve statistical significance 

Learning Rate: 0.001 Loss Function for CapsNet: Margin Loss 

Optimizer: Adam[27] Validation Split: 20% of training data used for validation 

   

6. RESULTS AND DISCUSSION 

The experimental outcomes of the Capsule Network (CapsNet) model are compared with those of a baseline Convolutional 

Neural Network (CNN), emphasizing the precision of kidney stone localization. The findings are analysed through 

quantitative metrics, qualitative visualization, and performance robustness. 

 

6.1 Quantitative Results 

The performance of both models was assessed via an identical dataset and assessment procedure. Table 2 encapsulates the 

principal metrics derived from the test set. 

Convolutional Layer 

ReLU 

Primary Capsule 

Squash 

Capsule 

Dynamic Routing 

Fully connected 

uj \i=wji*uj 

Dynamic Routing 

Softmax 

cij=softmax(bij) 

Fully connected 

 

Squash 

vj=squash(sj) 

Agreement 

aij=vj*uj \i 

bij=bij+aij 
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TABLE II: PERFORMANCE COMPARISON BETWEEN CAPSNET AND CNN 

Metric Capsule Network CNN Baseline 

Accuracy (%) 96.5 92 

Precision (%) 96 90 

Recall (%) 97 89 

F1-Score (%) 96 90 

Dice Coefficient 0.93 0.84 

IoU (Localization) 0.89 0.78 

 

The table compares the efficacy of kidney stone detection between the capsule network and a CNN baseline. The capsule 

network surpasses capsule network outperforms the CNN across all measures, with an accuracy of 96.5%, along with 

enhanced precision, recall, and F1score, and markedly improved localization metrics (Dice coefficient of 0.93 and IoU of 

0.89), demonstrating superior proficiency in classification and spatial localization. 

6.2 Qualitative Analysis 
 

The results validate that CapsNet augments detection precision and elevates localization accuracy. Furthermore, its 

capacity to generalize effectively on a minimal dataset renders it appropriate for medical fields where labelled data are 

deficient. 

Fig. 4: Localization heatmaps generated by both algorithms. 
 

The confusion matrices for the capsule network and the CNN baseline are presented. This graphic presents a comprehensive 

comparison of the performance of each model in categorizing photos with and without kidney stones. The CapsNet model 

attained greater count of true positives (69) and true negatives (70) while reducing false positives and false negatives to 

only two and three instances, respectively. The results validate that CapsNet augments detection precision and increase 

localization accuracy. Furthermore, its capacity to generalize effectively on a minimal dataset renders it appropriate for 

medical fields where data are deficient. In contrast, the CNN baseline exhibited more classification errors, including six 

false positives and seven false negatives. The discrepancies are significant in medical diagnostics, as even a minor incidence 

of false negatives can lead to missed diagnoses and delayed treatment. as shown in the following figure. 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 5 Confusion matrices 
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Figure 6 depicts the training loss trajectories for the capsule network and the CNN throughout 50 epochs. The CapsNet 

model exhibits superior convergence speed and reduced final loss relative to those of the CNN. This signifies that it might 

acquire significant features more rapidly and with enhanced stability, the more gradual slope of CapsNet signifies less 

variability in the learning process, which is essential for mitigating overfitting, especially when relatively small datasets 

are employed. In contrast, the CNN loss curve demonstrates a slow decline accompanied by considerable fluctuations, 

suggesting potential challenges in the generalization and acquisition of complex spatial features. The findings corroborate 

the premise that CapsNet, because of its pose-aware design, is more adept at tasks such as kidney stone localization, where 

accuracy and spatial comprehension are essential. 
 

 
 

Fig. 6: Training Loss vs. Epoch 

 
 

7. CONCLUSION 
 

This research introduces a capsule network-based method for accurately localizing kidney stones in CT images. The 

suggested model exhibited enhanced performance relative to a typical CNN, attaining an accuracy of 96.5%, a Dice 

coefficient of 0.93, and an IoU of 0.89 while markedly decreasing the number of false positives and false negatives. 

The CapsNet's ability to maintain spatial and postural information improved the localization precision and classification 

dependability, as demonstrated by confusion matrices and training loss curves. These findings highlight CapsNet's ability 

to improve diagnostic accuracy in medical imaging. Subsequent research may investigate the extension of this framework 

to three-dimensional data and its integration into real-time clinical operations. 
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