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A B S T R A C T 
Smart contracts (SCs) have become an essential component in the world of decentralized applications, 

automating transactions across blockchain networks without the need for intermediaries, and with this 

rise in adoption, the technology has also brought forth growing concern due to security vulnerabilities, 

which have led to serious financial damage, and the problem is far from being solved. Traditional 

auditing methods often struggle to capture the more intricate vulnerabilities hidden within smart contract 

logic, particularly owing to the irreversible nature of blockchain transactions. Given these challenges, 

researchers have been actively exploring more advanced detection techniques. Despite progress, many 

existing studies tend to focus narrowly on specific methods, whether static analysis, dynamic testing, or 

machine learning models, without offering a comprehensive comparison across all available approaches. 

This fragmented landscape leaves a noticeable gap for practitioners looking for a well-rounded 

understanding of smart contract security solutions. To address this, our study set out to systematically 

review the existing body of work, analysing 21 reviewed studies published between 2020 and 2024. The 

primary aim was to combine the diverse techniques that have been proposed for detecting vulnerabilities 

in smart contracts, ranging from static and dynamic analyses to more recent AI-driven models, graph-

based techniques, and hybrid systems, critically evaluating their strengths, weaknesses, and practical 

effectiveness. The methodology followed a structured approach. We searched major research databases, 

IEEE Xplore, ACM Digital Library, SpringerLink, ScienceDirect, and Scopus—using carefully crafted 

search queries to ensure that we captured the most relevant and up-to-date papers. Our findings revealed 

that AI-based methods, especially those leveraging deep neural networks and graph neural networks, 

have achieved impressive detection accuracy in controlled environments. For example, models such as 

ContractWard and SCVDIE-ENSEMBLE reported Micro-F1 scores of 98.48% and 95.46%, 

respectively, but these models also have a trade-off—they demand high computational resources, which 

limits their real-world deployment in resource-constrained settings. On the other hand, lighter tools such 

as Slither and NeuCheck offer faster detection and lower resource usage but might fall short in regard to 

identifying more complex or new vulnerabilities. We also noticed a growing trend towards real-time 

monitoring tools, such as SODA and GPTScan, which aim to strike a balance by reducing false positives 

while providing proactive security measures. However, several challenges remain unresolved where 

many AI-driven models still rely heavily on labelled datasets, which may not generalize well to novel 

attack patterns. Scalability is another concern, especially for models that are computationally intensive.

1. INTRODUCTION 

With the emergence of blockchain technology and its rapid development, it has led to radical transformations in many 

sectors, such as the industrial and financial sectors, by relying on this technology on decentralized transaction systems that 

prioritize security in executing transactions, which enhances transparency and increases levels of security [1] [2]. Smart 

contracts (SCs) are programs written in specialized languages that execute automatically, eliminating intermediaries, as the 

mechanism for executing these contracts is through predefined rules that are written via dedicated programming instructions 

so that they meet the desired goal [3]. The programming languages used to write SCs are high-level programming languages, 

examples of which are Solidity, Vyper, and Rust [4]. SC is used to automate processes in many areas, such as financial 

exchanges, where it is currently used to exchange digital currencies such as Bitcoin and Ethereum, supply chains and identity 
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verification. Therefore, SC is vulnerable to exploitation by attackers, who can exploit flaws in the written code that may be 

caused by human error [5]. 

 

Detecting vulnerabilities in SC systems is a significant challenge because of their complex nature, where traditional 

auditing methods struggle to address these complexities because there is no central point of control. Furthermore, transactions 

are considered irreversible after publication, making it difficult to detect security vulnerabilities early or address them after 

publication [6]. 

Deploying SCs in blockchain (BC) applications can lead to catastrophic problems and billions of dollars in financial 

losses if they contain security vulnerabilities [7], where these vulnerabilities can arise for many reasons, including (1) 

immature programming languages [8], (2) a lack of development experience [9], and (3) insufficient development and 

verification tools [10]. 

These issues highlight the need for measures that are adaptive to the rapid developments taking place [11]. In response 

to these problems, researchers have developed various techniques, such as static analysis, dynamic analysis, machine 

learning (ML), and deep learning (DL), to uncover these vulnerabilities [12] [13] [14], each of which has advantages and 

disadvantages. 

Many tools have emerged to solve these problems in SCs, such as Mythril [15], Slither [16], and Oyente [17]. However, 

there are still limitations, including scalability limitations and difficulty identifying new or complex vulnerabilities. 

This study conducts a comprehensive review of current research on SC vulnerability detection, focusing on current trends, 

challenges, and future directions that can contribute to enhancing the security of BC systems. 

Over the past few years, numerous surveys and review articles have explored different methods for detecting 

vulnerabilities in smart contracts. For example, [12] examined formal verification and static analysis techniques in their 

study. [10] also reviewed static and dynamic analysis tools; however, they did not delve into AI-driven approaches. Moving 

forward, [13] contributed a review that highlighted machine learning methods, but their work did not address graph-based 

models or the need for real-time monitoring solutions. 

While these efforts have certainly advanced the field, there is still a noticeable gap. No comprehensive study has 

successfully combined static, dynamic, machine learning/deep learning, graph-based, and real-time detection strategies under 

one unified framework. Moreover, some of the latest advancements, such as transformer-based architectures and zero-shot 

learning techniques, are scarcely mentioned in the current literature. 

The primary objectives are (1) to identify and classify state-of-the-art detection techniques; (2) to critically analyse their 

strengths, weaknesses, and applicability; and (3) to highlight emerging trends and unresolved challenges. From these 

objectives, the following research questions are addressed: 

 What are the predominant methods currently used for smart contract vulnerability detection, and how do they differ 

in scope and performance? 

 What gaps or limitations exist in current detection techniques, and how might they be addressed in future research? 

 How can AI-based and hybrid approaches be optimized for both accuracy and scalability in real-world 

deployments? 

 

This paper aims to bridge these gaps. We present a systematic review that captures a broad spectrum of detection 

methodologies published between 2020 and 2024. In addition to listing tools, we provide a detailed comparative analysis of 

their performance. Additionally, the paper offers critical insights into emerging trends and outlines directions for future 

research in this rapidly evolving domain. 

The remainder of this paper is organized as follows: Section 2 presents the background on blockchain and smart contract 

fundamentals; Section 3 outlines the methodology of the review; Section 4 provides a detailed literature analysis; Section 5 

offers a comparative evaluation and discussion; and Section 6 concludes the paper with key findings and future research 

directions. 
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2. BACKGROUND 

2.1 BC Basic Architecture 

The BC uses a sequential data structure, where requests are raised for different blocks according to their chronological 

age. The first block is known as the 'genesis block'. The information of a transaction is a data structure that represents the 

transfer of value through signature processes. A block represents a collection of transaction data and consists of a block 

header and a block body. The block header includes [18]: 

 Protocol Version: This version is utilized for software update tracking. 

 Previous Block Hash: It records the previous block hash value in the current block. This unique hash value, 

generated through an irreversible hash algorithm based on the block's information, serves to uniquely identify the 

block. Storing the hash value of the previous block in the current block ensures a link between the two blocks. 

 Merkle Root: Records the hash value of the Merkle tree root of this block. 

 Timestamp: The timestamp of the block creation is recorded. This timestamp ensures that the blockchain's data can 

be stored in chronological order, allowing the data's origin to be traced on the basis of the block's timestamp. 

 Difficulty Target: Indicates the difficulty coefficient that must be solved for the current block. 

 Nonce: A dynamically calculated value derived through computational effort during the mining process. 

The block body contains the content of the transaction and the relevant information. Each transaction is highlighted with 

a digital signature, which ensures block data security. Typically, the block body includes the following components: 

 Transaction Byte Size: Indicates the storage space occupied by transactions. 

 Transaction Count: Denotes the total number of transactions in the block. 

 Transaction Data: Contains the actual transactional records bundled within the block. 

All transaction information within the block's body is organized via the Merkle tree structure represented in Fig. 1 [19]. This 

information is located in the leaf nodes. The leaf nodes are hashed together to generate successive hash values, which 

continue to combine until the Merkle tree root node is obtained [20]. 

 

Fig 1. Merkle tree structure 

2.2 BC mechanism 

The BC process can be divided into three stages: (1) block formation, (2) consensus verification, and (3) ledger 

maintenance. 

 Block Formation: During this phase, network nodes gather information about the transactions broadcast across them. 

These nodes compete for the privilege of validating these transactions on the basis of the node's computing power. 

Nodes that obtain validation rights receive incentives according to a specific reward system. These incentives are 

used to encourage nodes to continually contribute their computing resources to the BC network. 

 Consensus Validation: At this stage, the node that has obtained transaction verification rights sends this block (after 

verification) to the BC network, and all the participating nodes in the network receive this block and verify its content 
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on the basis of the consensus protocol used in the BC network. These nodes evaluate the block content and record it 

on the BC ledger. 

 Ledger maintenance: This stage is called ledger maintenance or ledger updating. The network nodes that receive the 

block in step 2 are stored in the BC ledger for long-term preservation. These nodes then perform periodic 

verifications via the timestamp and block hash value to ensure that the blocks in the ledger have not been tampered 

with. This process enables applications at higher layers to query the ledger information. 

 

2.3 BC structure 

Fig. 2 illustrates the structure of the BC layers [21]: 

 

Fig 2. The structure of the BC layers [21] 

 

The data layer includes the chain structure, data blocks, timestamps, Merkle trees, hash functions, and cryptographic 

methods. This layer forms the basis for various functions of BC, such as management, organization, and storage. The network 

layer uses a peer-to-peer (P2P) mechanism to connect all nodes within the chain. A consensus algorithm determines which 

nodes have the right to execute and verify transactions. The incentive layer integrates rewards and penalties into the BC 

system. The smart contract layer contains the set of contracts that are being executed. The application layer combines the 

base structure, code script, and SC, allowing BC to be applied to various real-world scenarios [7]. 

 

2.4 Smart contract 

Smart contracts are self-executing programs used to automatically implement the terms of agreements between parties, 

where these contracts enable the execution of the agreement's terms once predefined conditions are met, reducing the 

potential for manipulation or disputes between parties. The SC life cycle consists of four critical stages: creation, deployment, 

execution, and completion [22]. 

 Stage 1-Creation: At this stage, the SC code is written. 

 Stage 2-Deployment: Deploy the SC to the Ethereum Virtual Machine (EVM) where it will be executed. 

 Stage 3-Execution: At this stage, the smart contract is actively engaged in processing the incoming transactions and 

any accompanying data where the virtual machine methodically executes the code line by line until the task is 

complete or the allocated gas limit has been reached. This sequence unfolds as the network proceeds to mine the 

next block. 

 Stage 4-Completion: In this stage, the contract’s state is updated and recorded on the BC ledger with its associated 

transactions. 
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3. METHODOLOGY 

To perform a comprehensive and unbiased evaluation of SC vulnerability detection techniques, a systematic literature 

review was implemented. The procedure consisted of identifying relevant research databases, creating focused search 

queries, and applying predetermined inclusion and exclusion criteria to filter the final set of studies. This study sought to 

collect, organize, and analyse contemporary tools, models, and frameworks that support the detection of SC vulnerabilities 

on multiple BC platforms. 

We utilized the following databases for data collection: IEEE Xplore, ACM Digital Library, SpringerLink, ScienceDirect 

(Elsevier), and Scopus. 

To identify relevant papers, a combination of keywords was used. The primary keywords used were as follows: 

 SC vulnerabilities. 

 SC security. 

 BC vulnerability detection. 

 Ethereum SC attacks. 

 AI in SC security 

 SC vulnerability detection deep neural network (DNN). 

 SC vulnerability detection (ML). 

The search was conducted between [02/2025] and [04/2025] using the carefully selected keywords mentioned above. 

Additional filters restricted the results to peer-reviewed publications in English published between January 2020 and 

December 2024, and we also performed backwards and forward citation tracking to identify relevant studies not captured in 

the initial search. Duplicate entries were removed via EndNote, followed by manual verification. 

The initial search retrieved 412 studies. After duplicates were removed, 356 studies remained. The titles and abstracts of the 

searches excluded 292 studies that did not meet the inclusion criteria, leaving 64 studies for the full review. Among these 

studies, 43 were excluded because of limited methodological details, a lack of empirical results, or a lack of relevance to the 

scope of the search, resulting in 21 studies being excluded from the final analysis. Fig 3 shows the Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram. 

 

Fig 3. The PRISMA flow diagram 
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Each study included in the review was evaluated via the following quality indicators: 

 The direct focus is on smart contract vulnerability detection within blockchain systems. 

 Clarity and completeness of the proposed detection approach. 

 Availability of quantitative performance metrics (accuracy, precision, recall, F1 score). 

 Sufficient detail provided to enable replication of the study. 

 Introduction of new techniques or significant improvements over existing methods. 

Only studies meeting at least four of the five criteria were included. 

Publications were included in the analysis if they met the specified criteria: 

 Published between 2020 and 2024 (to focus on recent advancements in BC security). 

 Focus on SC vulnerabilities. 

 Security issues in the BC-based SC are discussed. 

 Presents new detection methods, tools, or frameworks for SC vulnerability detection. 

 

4. LITERATURE REVIEW 

In this section, we analyse the techniques and tools used to detect vulnerabilities in SCs. The literature is divided into 

three categories: (1) static analysis tools (STAs), (2) dynamic analysis tools, and (4) ML and DNN tools. Fig. 4 shows the 

yearwise development of analysis tools for BC-based SC. 

4.1 SATs 

The authors of [23] presented a tool called Ethainter, which is an SAT used to sensor complex vulnerabilities in SCs. 

Traditional security analysis tools have focused on individual vulnerabilities, but Ethainter has expanded its detection 

capabilities to include multiple vulnerabilities that can appear in an SC. Ethainters track how untrusted inputs spread in smart 

contracts, and models bypass mechanisms for protection conditions. An ethainter is an SAT that relies on rules stored in a 

data log. These rules are used to analyse the logic of SC execution. The ethainter achieved an overall accuracy of 82.5%. 

Reference [24] presented a formal symbolic process virtual machine (FSPVM-E), a hybrid formal verification system 

designed to ensure the reliability and security of Ethereum-based SC, which combines symbolic execution, theorem proving, 

and static analysis to detect vulnerabilities at the source code level. 

FSPVM-E consists of four core components: 

 GERM (a general, extensible, and reusable memory framework) 

 Lolisa (a formal Solidity specification language) 

 Father (a formal interpreter at Coq) 

 Helper tools and libraries that detect basic vulnerabilities and reduce workload. 

The authors of [25] presented a tool called NeuCheck, a SAT based on the syntax tree to detect vulnerabilities in SC that 

relies on symbolic execution and dependency graphs and uses syntactic analysis to detect vulnerabilities faster. NeuCheck 

works in three stages: (1) converting the source code to a syntax tree, (2) using DOM4j, an XML parser, to query the syntax 

tree for security patterns, and (3) generating reports that identify the type and location of the vulnerability. NeuCheck 

outperforms symbolic execution-based tools in speed and scalability and supports multiple platforms (Windows, Linux, and 

Mac). 

Reference [26] presented a secure Ethereum smart contract (SESCon), an SAT that improves SC security by detecting 

vulnerabilities on the basis of predefined patterns. SESCon applies bug analysis to trace data flows and identify security risks 

and then applies XML path (Xpath) queries to detect vulnerabilities at the syntax tree level. SESCon consists of three core 

modules: (1) a vulnerable patterns module to extract standard vulnerability patterns from Ethereum security documentation; 

(2) an XPath module that converts the Solidity code to an abstract syntax tree (AST) using XPath queries to detect common 
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vulnerabilities; and (3) a contamination analysis module that tracks changes to state variables, function dependencies, and 

data flows. SESCon achieves 90% detection accuracy 

 

Fig 4. The annual progression of analytical tools designed for BC-based SC 

 

Reference [27] presented the SmartBugs framework, a framework used to analyse the Solidity SC. SmartBugs simplifies 

automated security analysis by integrating 10 security analysis tools, namely, Slither, Mythril, and SmartCheck, and provides 

selected datasets for security assessment. SmartBugs consists of five main components: (1) a command-line interface (CLI) 

used to run security tools on SC, (2) tool configurations used to specify execution parameters for each tool, (3) Docker-based 

security tools that use Docker images for standard execution environments, (4) curated Solidity datasets that provide labelled 

SCs with known vulnerabilities, and (5) a SmartBugs Runner that coordinates analysis tools and collects security reports. 

SmartBugs first converts Solidity SC to an AST representation and then runs multiple security tools to detect vulnerabilities 

and generate security reports for comparison. Mythril achieves the highest detection rate at 27%. Ninety-seven percent of 

real-world contracts were flagged as vulnerable, indicating a high false positive rate. SmartBugs provide the largest 

experimental setup for solidity security evaluation and facilitate security tool integration and comparison. 

Reference [28] introduces Smart-Graph, a web-based tool that generates graphical representations of SC. The Smart-

Graph provides Unified Modelling Language (UML) diagrams for SCs that visualize the interactions of functions and 

contracts within decentralized applications (DApps). In a smart graph, users enter the address of an SC into the web interface, 
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and the tool retrieves the contract source code from Etherscan, parses the contract code, extracts structural elements, and 

generates a graphical representation in the form of UML diagrams that show large or complex functions. A smart graph has 

been applied to real-world contracts and has demonstrated better readability and clarity than text-based contract analysis 

does, thus enhancing SC debugging by clarifying dependencies. 

Research [29] presents SmartScan, a tool used to detect denial of service (DoS) vulnerabilities caused by unexpected 

rollbacks in Ethereum SC that occur due to a DOS attack when a contract fails due to deliberate transaction rollback, 

rendering it inoperable. SmartScan operates in three stages. The first stage is the static analysis stage, where pattern matching 

and the transformation language are used to identify vulnerable sending, transfer, and communication functions. The second 

stage is the dynamic analysis stage, where the SC under test is deployed on a private Ethereum test network. The third stage 

is the reporting stage, where the type of vulnerability is determined. 

Research [30] has presented the verifier smart (VERISMART), which is an SC security tool. This tool focuses on 

computational security. VERISMART uses a verification algorithm consisting of 4 stages: (1) Transaction-specific constant 

discovery, where conditions that apply to all smart contract transactions are automatically discovered; (2) static loop analysis 

ensures safe execution of repetitive functions; (3) comprehensive path analysis, which evaluates all possible execution paths; 

and (4) an improved satisffiability modulus (SMT) analyser, which uses advanced techniques to efficiently handle 

computational limitations. Table 1 shows a comparative summary of static analysis tools (SATs). 

TABLE I. A COMPARATIVE SUMMARY OF STATIC ANALYSIS TOOLS (SATS) 

Ref 
Year Detection Method 

Vulnerabilities 

Covered 
Key Strengths Limitations 

[23] 
2020 Static Analysis - 

Highly precise taint analysis, Real-
world attack validation 

Cannot detect new 

vulnerability types not 

modelled in its rules 

[24] 
2020 

symbolic execution, theorem 

proving, and static analysis 
- 

Ensures correctness of Solidity 

contracts before deployment 

it requires familiarity 

with Coq. 

[25] 
2021 

syntax tree-based static 

analysis 

Access Control 

Vulnerability, 
Reentrancy Attacks, 

Hash Collision, 

Integer 
Overflow/Underflow, 

Dependence on 

Predictable Variables 

Outperforms symbolic execution-based 
tools, with Cross-platform support 

(Windows, Linux, Mac). 

Can’t detect new 

Vulnerabilities 

[26] 
2021 

Static Analysis based on Taint 

analysis and XPath queries 

SWC-100, SWC-

107, SWC-113, 
SWC-120, SWC-122 

Combines XPath queries & taint 
analysis to reduce false positives, 

analyses real-world Ethereum contracts 

with high accuracy. 

It is limited to 
predefined vulnerability 

patterns and can’t detect 

new Vulnerabilities. 

[27] 
2020 

Multi-Tool Framework 
DASP10 

Vulnerabilities 

Integrates 10 security tools, a dataset for 

benchmarking 

It is limited to 

predefined vulnerability 

patterns and can’t detect 
new Vulnerabilities 

[28] 
2021 

graphical representations of 

Ethereum SC 
- 

Improves contract understanding, 

visualizes dependencies. 

No vulnerability 

detection 

[29] 
2021 

Static + Dynamic Analysis 
DoS via Unexpected 
Revert 

Combining pattern matching and testing 
on private networks 

Limited to DoS 
vulnerabilities 

[30] 
2020 

Formal Verification 

Arithmetic Safety, 

Overflows, 
Underflows 

Lowest false positive rate, exhaustive 

verification 

Limited to arithmetic 

safety, it cannot detect 
new vulnerabilities or 

vulnerabilities that were 

previously unknown to 

the tool 

 

4.2 Dynamic analysis 

Reference [31] introduces model-based contracts (ModCon), which allows developers to define expected contract 

behavior via state machines and supports state transitions, pre/post conditions, and system constants. The tool is capable of 

generating test cases via different strategies to ensure state testing, state transitions, and complex interactions. The tool has 

a graphical interface that allows users to upload contracts, define models, and execute tests. 
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Research [32] has presented Ethereum concolic (Etherolic), a security analyser based on obfuscation. Etherolic consists 

of six components: (1) a contamination engine that flags untrusted inputs and tracks their propagation, (2) an attack indicator 

that detects security violations during execution, (3) a security detector that determines whether existing security mechanisms 

mitigate vulnerabilities, (4) a log analyser that collects runtime data for debugging and reporting, (5) a test generator that 

generates inputs to confirm vulnerabilities, and (6) a report generator that produces vulnerability reports. Ethereum runs on 

EVM bytecode. The results have shown that it reduces the number of false positives. 

Reference [33] introduces a solidity fuzzer (sFuzz), a feedback-driven adaptive testing tool for SCs. The tool relies on 

adaptive camouflage. It uses American fuzzy lag (AFL)-inspired mutation strategies to generate test inputs. The tool also 

monitors the execution process to detect vulnerabilities. 

The authors of [34] presented a smart contract online detection attack (SODA) framework. It is a framework for detecting 

attacks on EVM-compatible SCs in real time. SODA collects information to extract transaction execution data and then relies 

on a detection layer through which custom detection applications can be created for real-time monitoring to detect suspicious 

transactions. This model features a compatibility mechanism that enables applications to run on multiple BC platforms 

without modification. This framework is limited to EVM-compatible BC platforms. Furthermore, detection applications 

must be manually developed for new types of vulnerabilities, and these applications are susceptible to human error and poor 

implementation, making them vulnerable to breaches and attacks. Table 2 shows a comparative summary of the dynamic 

analysis tools. 

TABLE II. A COMPARATIVE SUMMARY OF DYNAMIC ANALYSIS TOOLS 

Ref 
Year 

Detection 

Method 
Vulnerabilities Covered Key Strengths Limitations 

[31] 
2020 

Model-

Based 

Testing 

Business Logic Flaws 

Best for enterprise 

contracts, 
generates high-

quality test cases 

Requires manual modelling 

[32] 
2020 

Concolic 
Execution 

+ Fuzzing 

integer overflow/underflow, reentrancy, and 

short address attacks 

Works without 
source code, 

generates exploits 

Manual verification is needed 

for some vulnerabilities 

[33] 
2020 

Adaptive 
Fuzzing 

Gasless Send, Exception Disorder, Reentrancy 

Attacks, Timestamp & Block Number 
Dependency, Dangerous Delegatecall, Integer 

Overflow/Underflow, Freezing Ether 

Fastest SC fuzzer, 

multiobjective 

optimization 

It cannot detect new and 
emerging vulnerabilities 

[34] 
2020 

Real-Time 
Monitoring 

Reentrancy Attacks, Unexpected Function 
Invocation, Short Address Attack, Tx.origin 

Authentication Exploits, Unchecked External 

Calls, Missing Transfer Events, Block Number 
& Timestamp Dependence 

Low overhead, 

works across 

EVM BC s 

Detection applications must be 

manually developed for new 

types of vulnerabilities 

 

4.3 DL/ML-based methods 

The study presented in [35] benefited from graph-based representations and graph neural networks (GNNs). The 

experiments used 3000 SCs. The methodology involves converting SC code into graphs that represent the syntactic and 

semantic structures discovered within the SC code. Master nodes represent function calls, and secondary nodes represent 

variables. This model achieved an accuracy of 84.48%. 

 

The authors of [36] presented a tool called ContractWard, which is based on ML, to detect six vulnerabilities in SC. The 

study used 49,502 SC. Five classifiers were tested: eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), 

Random Forest, Support Vector Machine (SVM), and k-nearest neighbors (KNN) . XGBoost achieved the best performance 

(Micro-F1= 98.48% and Macro-F1= 96.41%). 

Study [37] presented Eth2Vec. Eth2Vec then uses the distributed memory model of paragraph vectors (DM-PV) model 

to learn code representations and then converts the code sequences into vector representations via natural language 

processing (NLP) techniques. The average accuracy achieved by Eth2Vec is 77.0%. 

In accordance with [38], a multitask learning approach was implemented to improve the detection of smart contract 

vulnerabilities. This approach consists of a lower sharing layer, where an attention mechanism combined with an artificial 

neural network (ANN) encodes contract text into vectors, and a task-specific layer, where convolution neural networks 
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(CNNs) perform vulnerability classification. The system reported detection accuracies of 77.5% for computational 

vulnerabilities, 70.31% for reentry vulnerabilities, and 78.85% for cases involving unknown addresses. 

The study in [39] introduces an ML-based approach for detecting vulnerabilities in Ethereum SC. The methodology 

begins with a feature extraction phase to extract key features, which are then used to train the CNN and random forest 

algorithms. The study focuses on bytecode analysis, and the authors acknowledge that source code analysis can provide 

deeper insights. 

The study in [40] introduced the smart contract vulnerability detection method based on information graph and ensemble 

learning (SCVDIE-ENSEMBLE), an SC vulnerability detection model that integrates multiple neural networks to increase 

accuracy and robustness. Using a dataset of 21,667 Ethereum SCs (11,756 vulnerable and 9,911 healthy), the methodology 

involves converting contracts into opcode sequences, generating information graphs (IGs) to capture relationships, and 

embedding features via Word to Vector (Word2Vec), Global Vectors for Word Representation (GloVe), and FastText. Seven 

neural networks, a CNN, a recurrent neural network (RNN), a region-based convolutional neural network (RCNN), a DNN, 

a gated recurrent unit (GRU), a bidirectional gated recurrent unit (Bi-GRU), and transformers, are trained, and their outputs 

are combined through ensemble learning (EL). The model achieves 95.46% accuracy and an F1 score of 97.57%. 

The study in [41] introduced CodeNet, a custom CNN-based model for detecting vulnerabilities in SCs. The methodology 

involves preprocessing SC code by compiling it into bytecode, converting it into a fixed-size format, and mapping it into an 

image for CNN analysis. CodeNet achieves 97.66% accuracy. However, the fixed-size image representation may lead to 

information loss in large SCs, and the nonscalable CNN design increases computation and memory demands, potentially 

causing performance bottlenecks on resource-limited devices. 

The study proposed by [42] proposes an ML-based approach for detecting vulnerabilities in Ethereum SC, focusing on 

security risks that have led to major financial losses. The methodology uses ASTs to identify structural similarities between 

vulnerable and nonvulnerable contracts. KNN and stochastic gradient descent (SGD) are employed for vulnerability 

detection. The KNN model achieved 90% accuracy. 

The study in [43] presented a DL approach that combines CNNs with an attention mechanism. The model uses CNNs 

with an attention mechanism to extract features from SC bytecode. The attention mechanism improves the model by 

capturing long-term dependencies between code sequences. After feature extraction, CNNs process the code sequences, and 

a SoftMax layer performs final classification to identify vulnerabilities. The model was tested on a dataset of 8,632 SCs, 

achieving 85% accuracy. 

Reference [44] presented an approach to detect vulnerabilities in SCs via a multilayer perceptron (MLP-ANN)-based 

ML model. The authors propose a tool that benefits from opcode and control flow graphs (CFGs) for feature extraction. The 

authors balanced the dataset through a fault injection method. The opcode and CFG features are embedded via 3D vectors 

and the term frequency-inverse document frequency (TFIDF). Although fault injection is a good addition for balancing the 

dataset and avoiding biased models, relying on artificial human vulnerability injection may lead to gaps in capturing real-

world vulnerability patterns. This limitation can affect the robustness of the model in real-time scenarios. The validity of the 

research can be enhanced by relying on sampling techniques to balance the dataset, which is based on creating synthetic 

samples on the basis of the analysis of existing samples. The research compares the proposed model with existing static and 

dynamic analysis tools, and no comparison is made with other ML or DL models, so including models such as transformer-

based architectures could provide better performance. 

The authors of [45] presented a tool called slicing symbolic execution (SliSE) designed to detect reentry vulnerabilities 

in SCs. The entry vulnerabilities are as follows: Program slicing is used to examine the intercontract program dependency 

graph (I-PDG) of an SC, generating warnings about potential vulnerabilities. SliSE reached an F1 score of 78.65%. The 

paper does not discuss how the proposed tool handles large or complex contracts. The symbolic execution can be very 

expensive in terms of resources and may have scaling issues, especially as the contract size increases. 

Research [46] presented the Domain Adaptive Graph Neural Networks (DA-GNN) model for detecting vulnerabilities 

in SCs. The DA-GNN applies a dual attention mechanism within the graph attention network to extract features from the 

contract code. The model works well on special types of vulnerabilities and does not address other vulnerabilities or new 

vulnerabilities that may arise with the continuous development of attack mechanisms and techniques. GNNs are 

computationally expensive and require high amounts of resources, especially when working on large and complex SCs. 

Research [47] presented a model called BiGAS, which is a model for detecting reentry vulnerabilities in SC. This name 

refers to the main components on which it is built: bidirectional GRU + attention + SVM (BiGAS). The authors replace the 
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SoftMax classifier with SVM. The model is designed to detect only reentry, which limits its applicability across a wider 

range of vulnerabilities. 

Reference [48] presented a hybrid attention mechanism (HAM) model that detected five types of vulnerabilities. The 

approach consists of three main phases: 

 Code Fragment Extraction: At this stage, the SC source code is analysed to extract code fragments that potentially 

contain security vulnerabilities. 

 Training phase: The model uses both single-head and multihead attention encoders to capture different aspects of 

the code's semantic and contextual information. 

 Finally, the model employs a fully connected network to classify the code fragments as vulnerable or not. 

Reference [49] introduces a model called GPTScan, which is an SC vulnerability detection model that includes the 

capabilities of generative pretrained transformers (GPTs) with static code analysis. The tool divides the detection process 

into three main steps: 

 The GPT is used to match the initial scenario and potential vulnerability characteristics. 

 Static analysis was used to confirm the GPT results. 

 The irrelevant functions are filtered out before the GPT step to reduce the computational overhead. 

GPTScan was evaluated on three datasets (Top200, Web3Bugs, and DefiHacks), achieving a false positive rate of 4.39% 

and a recall value of 70%. Although GPTScan was tested on three datasets, these datasets have a limited range of 

vulnerabilities. Thus, its ability to detect new or emerging types of vulnerabilities remains unclear. Implementing 

mechanisms to learn from evolving vulnerabilities would ensure that GPTScan remains relevant as SC attack strategies 

evolve. 

Table 3 shows a comparative summary of machine learning and deep learning methods. 

TABLE III. A COMPARATIVE SUMMARY OF MACHINE LEARNING AND DEEP LEARNING METHODS 

Ref 
Year Detection Method Vulnerabilities Covered Key Strengths Limitations 

[35] 
2021 

Graph Neural 

Networks (GNNs) 

Reentrancy, Timestamp 

Dependence, Infinite Loops 

Uses graph-based 

contract 

representations, with 
high accuracy 

High computational cost, 

requires training data 

[36] 
2020 

ML (XGBoost, RF, 

SVM) 

Timestamp Dependence, 

Reentrancy, 
Overflow/Underflow, Call 

Stack Depth, Transaction Order 

Dependence 

High detection 
accuracy, tested on 

49,502 contracts 

Limited to 6 vulnerability types, 
cannot detect new 

vulnerabilities 

[37] 
2021 

ML + NLP (PV-DM) 
SC Bytecode-Level 
Vulnerabilities 

Learns from bytecode 

without predefined 

features 

Struggles with unknown 
vulnerabilities 

[38] 
2022 

CNN + Attention-
Based Neural 

Network 

Computational Vulnerabilities, 
Reentrancy, Unknown Address 

Issues 

Captures contextual 
meaning, improves 

accuracy 

Hard parameter sharing 

weakens generalization 

[39] 
2020 

Neural Network 
(NNBOOF, 

CNNBOSM, 

RFBOOF) 

Opcode-Level Vulnerabilities 

Uses opcode analysis, 

supports multiple 
detection models 

Lacks dataset balancing, only 

bytecode-level analysis 

[40] 
2022 

Ensemble Learning 
(CNN, RNN, RCNN, 

DNN, GRU, Bi-GRU, 

Transformers) 

Opcode Sequences, Contract 

Relationships 

High accuracy using 

multiple neural 
networks 

High computational cost 

[41] 
2022 

Custom CNN SC Vulnerabilities 

Optimized for feature 

extraction, outperforms 

VGGNet 

High computation/memory 

demand, image representation 

may cause information loss 

[42] 
2021 

KNN + SGD Structural Similarities in SC 
Uses ASTs to find 

vulnerabilities 

No dataset balancing may 

introduce bias 

[43] 
2021 

CNN + Attention 
SC Bytecode-Level 
Vulnerabilities 

Captures long-term 

dependencies, NLP-

based 

Limited to 5 vulnerability types 
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[44] 
2024 

Multi-Layer 
Perceptron (MLP) 

Opcode Features, CFG-Based 
Detection 

Standardized 

preprocessing, 
balanced dataset with 

synthetic errors 

Synthetic errors may introduce 
bias 

[45] 
2024 

Program Slicing + I-

PDG Analysis 
Reentrancy Vulnerabilities 

Uses program slicing 

for intercontract 
analysis 

Limited to reentrancy, scaling 

issues for large contracts 

[46] 
2024 

Graph Neural 

Networks (GNNs) + 
Dual Attention 

SC Vulnerabilities 

Improved feature 

extraction for contract 
analysis 

High computational demand 

[47] 
2024 

Bi-GRU + SVM Reentrancy Vulnerabilities 
Improved classification 

accuracy 
Limited to reentrancy 

[48] 
2023 

Hybrid Attention + 
Neural Network 

5 SC Vulnerabilities 
Captures both single 
and multihead attention 

No dataset balancing, limited to 
5 vulnerabilities 

[49] 
2024 

GPT + Static Code 
Analysis 

SC Vulnerability Detection 

Uses GPT for initial 

detection, static 
analysis for 

confirmation 

Limited dataset, unclear 

detection for new 

vulnerabilities 

 

5. KEY FINDINGS, GAPS, AND FUTURE DIRECTIONS 

On the basis of the literature reviewed, there is an increasing reliance on ML and graph-based models to detect SC 

vulnerabilities. Studies such as ContractWard and SCVDIE-ENSEMBLE demonstrate the effectiveness of ensemble 

learning and DNNs in identifying SC vulnerabilities. Graph-based methods such as the graph-based GNN, DA-GNN, and 

SliSE show strong performance in modelling SCs as interconnected nodes, which significantly improves SC vulnerability 

detection by capturing patterns and relationships between code fragments. Additionally, runtime monitoring and intrusion 

detection tools such as Sereum, SODA, and GPTscan are emerging as viable solutions that help reduce false positives and 

provide proactive security. 

Studies such as Eth2Vec and GPTScan, which use natural language processing (NLP) techniques to analyse SC code, 

have shown strong capabilities in capturing patterns and relationships within code, emphasizing the importance of leveraging 

context to detect vulnerabilities and leveraging attention-based transformers and networks to improve detection performance. 

Adaptive fuzzing techniques such as CrossFuzz, sFuzz, and EVMFuzzer can address security issues at the EVM level rather 

than at the code level. Hybrid approaches that combine static and dynamic analysis (e.g., ModCon, SolAnalyser) have also 

proven to be more effective in capturing different types of vulnerabilities. 

Notably, many ML-based tools, such as Eth2Vec, ContractWard, and SCVDIE-ENSEMBLE, struggle to detect unknown 

or emerging vulnerabilities because they rely on prelabelled datasets that may not generalize well. Furthermore, the high 

computational costs associated with graph-based and DNN models such as DA-GNN, BiGAS, and CodeNet pose scalability 

issues for real-world deployment. Another critical gap is the limited focus on interactions between contracts, as most studies 

evaluate individual contracts rather than analysing how vulnerabilities propagate across multiple contracts. Additionally, 

real-time performance monitoring tools such as SODA and GPTscan are still limited by false positives and reliance on 

predefined rule sets. 

Several critical gaps emerged from this synthesis. First, most AI-driven models rely heavily on labelled datasets, which 

restricts their ability to detect previously unseen vulnerabilities and limits generalizability across different blockchain 

platforms. Second, while graph-based models improve structural analysis, they are computationally intensive and present 

scalability challenges, particularly for real-time applications. Third, the majority of tools focus on vulnerabilities within 

individual contracts, with limited research into how vulnerabilities propagate across interacting contracts. Fourth, real-time 

monitoring frameworks are often designed for EVM-compatible platforms, leaving non-EVM blockchains underexplored. 

Finally, there is a lack of standardized evaluation benchmarks, making it difficult to compare tools fairly or replicate results 

across studies. 

To address these gaps, future research should focus on discovering new or emerging vulnerabilities by developing 

adaptive AI models that can identify unknown vulnerabilities without relying solely on predefined datasets. Graph-based 

detection models and DNN architectures can also be improved to reduce computational overhead and improve real-time 

applicability; thus, future work could focus on combining symbolic execution, static analysis, and DNNs to improve 

detection accuracy and reduce false positives. 

When comparing the available tools, ContractWard and SCVDIE-ENSEMBLE stood out for their impressive accuracy, 

where they achieved Micro-F1 scores of 98.48% and 95.46%, respectively. However, this level of precision comes at a price 



 

 

190 AL Azzam et al., Mesopotamian Journal of Big Data, Vol. (2025), 2025, 178–194 

 

because models such as SCVDIE-ENSEMBLE, which rely on cluster-based architectures, demand significant computational 

resources, making them less practical for real-time detection scenarios. 

On the other hand, tools such as Slither and NeuCheck—both lightweight static analysis frameworks—are incredibly 

efficient where they require minimal computational power and deliver rapid analysis. However, the trade-off is that these 

tools often struggle to maintain high accuracy, especially when confronted with intricate or unconventional vulnerabilities. 

There are runtime monitoring solutions such as SODA, which offer middle ground by balancing resource usage and 

detection performance. However, manual intervention is typically needed to develop and fine-tune detection applications. 

In summary, balancing accuracy, resource efficiency, and detection speed across various smart contract vulnerability 

detection methods is challenging. 

Table 4 shows the rankings of the SC vulnerability detection tools. 

TABLE IV. RANKING OF SC VULNERABILITY DETECTION TOOLS 

TOOL NAME DETECTION 

ACCURACY (SCORE) 

COMPUTATIONAL 

RESOURCES (SCORE) 

DETECTION SPEED 

(SCORE) 

TOTAL 

SCORE 

RANK 

CONTRACTWARD High Medium High 8 1 

NEUCHECK Medium High High 8 1 

SLITHER Medium High High 8 1 

SODA Medium Medium High 7 2 

SCVDIE-

ENSEMBLE 

High Low Medium 6 3 

ETHAINTER Medium Medium Medium 6 3 

DA-GNN High Low Low 5 4 

SMARTSCAN Low High Medium 6 3 

ETHEROLIC Medium Medium Low 5 4 

GPTSCAN Medium Medium Medium 6 3 

FSPVM-E High Low Low 5 4 

SMARTBUGS Medium Low Medium 5 4 

VERISMART High Low Low 5 4 

CODENET High Low Low 5 4 

SFUZZ Medium Medium High 7 2 

 

6. CRITICAL ANALYSIS OF METHODS STRENGTHS AND WEAKNESSES 

Graph-based methods effectively model smart contracts as node-link structures to capture detailed intercode 

relationships, but they are computationally expensive and struggle to scale for large or complex contracts. 

 Machine learning (ML) and deep neural networks (DNNs) often achieve high accuracy in detecting predefined 

vulnerabilities within training datasets, but they struggle with generalizing to unseen or emerging vulnerabilities owing to 

their dependency on labelled datasets. 
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By analysing code without execution, static analysis enables the efficient detection of recurring vulnerability patterns. 

However, it is less effective in capturing flaws involving multiple contracts or vulnerabilities that become apparent only 

through dynamic behavior. 

Dynamic analysis tools, while capable of simulating runtime behaviors to uncover complex attack scenarios, often require 

manual effort in creating test cases or state models. 

Hybrid approaches that combine static and dynamic analysis show promise in improving detection accuracy and 

coverage, but they introduce additional complexity and computational overhead. 

 

7. CONCLUSIONS 

This systematic review provides an in-depth analysis of the latest developments in smart contract vulnerability detection, 

drawing on a diverse body of research encompassing static and dynamic analysis tools, machine learning and deep learning 

techniques, and emerging hybrid and graph-based approaches. By examining 21 studies published between 2020 and 2024, 

the review identified the most effective detection strategies and the key limitations of each methodological category. 

From a comparative perspective, the results reveal a consistent trend: hybrid and AI-based models tend to outperform 

traditional methods in terms of detection accuracy, particularly when identifying known vulnerabilities. In particular, graph-

based methods demonstrate a strong ability to capture the structural and contextual relationships embedded in smart contract 

code—patterns often overlooked by other techniques. However, this ability comes at a cost. Their computational 

requirements can be significant, making them less suitable for immediate deployment. In contrast, lightweight static analysis 

tools offer speed and lower resource consumption, but they may struggle to detect new or highly complex vulnerabilities. 

This study contributes in three ways. First, it brings together a fragmented field into a coherent, codified framework 

encompassing multiple methodological areas. Second, it provides a critical performance comparison, accurately identifying 

the intersections of accuracy, scalability, adaptability, and trade-offs. Third, it identifies critical research gaps and proposes 

practical paths to address them, paving the way for progress in this rapidly evolving field. 

The implications of these findings extend to both theory and practice. From a theoretical perspective, this review enriches 

the understanding of how methodological decisions affect vulnerability detection outcomes, providing a solid foundation for 

future comparative studies and model innovation. Practically, it provides a guide for developers, auditors, and security 

analysts to select tools that are appropriate for specific operational contexts—whether high-precision detection in resource-

rich environments or rapid, lightweight scanning in situations where time is essential. More importantly, recognizing ongoing 

challenges, such as the urgent need for adaptive models capable of identifying zero-day vulnerabilities, sets clear priorities 

for the next generation of tools. 

Finally, this work not only maps the current state of the field but also lays the foundation for methodologies that balance 

accuracy, efficiency, and adaptability. By linking theoretical insights with practical application, this work supports the 

creation of more secure, scalable, and resilient blockchain systems in the face of evolving threats. 
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