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A B S T R A C T 
Medical image analysis constitutes the foundation of the diagnosis of potential life-threatening conditions 
such as lung cancer. Nevertheless, AI model construction in this context is hindered by strict privacy 
regulations (e.g., HIPAA, GDPR), the variability of imaging protocols, and the paucity of large annotated 
datasets. These barriers constrain centralised machine learning and dampen interdisciplinary research. 
To overcome such barriers, this paper introduces shared generator-serverless federated learning (SGS-
FL), a decentralised multimodal medical imaging framework. By employing a shared generator and 
multidiscriminator architecture, SGS-FL eliminates centralised dependency via cross-modal synthesis, 
while the communication burden is reduced by embedding a sharing protocol. By employing latent space 
aggregation with attention and independent component analysis, the interpretability, fairness, and 
relevance of features are improved. Experimental evaluation was conducted across three lung cancer 
datasets: LIDC-IDRI CT scans (≈1,018 cases), NODE21 chest radiographs (~10,000 images), and 
NSCLC radiogenomic PET-CT images (~211 patients). By employing 10-fold cross-validation with 10 
independent iterations, SGS-FL achieved 92.5% ± 1.2 accuracy, 0.83 ± 0.02 Dice coefficient, 0.946 ± 
0.01 area under the curve, and 21.5 ± 1.1 Frechet inception distance (FID), significantly surpassing 
benchmark state-of-the-art schemes such as FedACS (~88%) and Federated Transfer Learning (~89%) 
(p < 0.01). The results indicate that SGS-FL achieves superior scalability, interpretability, and 
performance and constitutes a sound paradigm of privacy-friendly and clinically trustworthy AI in 
medical imaging. 

1. INTRODUCTION 

Medical image analysis forms the cornerstone of modern diagnostic workflows, offering critical insights into diseases 
such as lung cancer, cardiovascular conditions, and neurodegenerative disorders. However, developing AI for medical 
imaging presents daunting challenges. These range from stringent data protection regulations, such as the HIPAA and GDPR, 
data islands within institutions, and wide variability in imaging modalities and annotation standards. As a result, institutions 
are reluctant or incapable of sharing raw medical data, limiting the possibility of centralising machine learning models on 
voluminous, heterogeneous datasets. Therefore, collaborative but privacy-preserving machine learning architectures are 
needed more than ever before in healthcare AI [1]. 

Federated learning (FL) [2] offers an ideal solution, accommodating model training while not exchanging raw data. While 
promising, most existing FL techniques are not sufficient when applied to realistic medical imaging settings. They often 
employ a central coordinating server, causing a single point of failure and administrative chokepoints. Most techniques also 
assume homogeneous data distributions, an unrealistic assumption given the heterogeneity of medical imaging protocols and 
patients across institutions. For these reasons, the existing federated techniques are plagued with poor model performance, 
limited generalizability to unseen data, and limited interpretability—a necessary requirement on clinical deployment fronts 
where the trustworthiness of AI systems matters most [3]–[5]. 

FL methods such as Federated Adaptive Client Sampling (FedACS) [5], Federated Transfer Learning (FTL) [4], and 
homomorphic encryption-based FL [3] provide some interesting innovations but nevertheless suffer from several key 
weaknesses. FedACS imposes drastic computational and communication overheads as a side effect of dynamic strategies for 
client selection. FTL demands significant energy resources and fine-tuning and hence is not realistic for organisations with 
weak computational ability. Homomorphic encryption methods, despite their strong guarantees of privacy, inflict drastic 
delays as a side effect of the encryption and decryption processes. Furthermore, most of these methods do not provide 
transparency of decisions, with no special facilities for visualising and verifying features affecting AI predictions [6]–[8]. 
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The Shared Generator Serverless Federated Learning (SGS-FL) system, as formulated in this article, addresses these 
main gaps with an entirely decentralised, serverless approach to multiparty medical imaging AI. SGS-FL avoids central 
coordination requirements with peer-to-peer model updates. SGS-FL uses a shared generator model on all clients, with 
discriminators on each node to enable modality-specific learning. This architecture accommodates the production of cross-
modal synthetic data supporting the learning processes while ensuring confidentiality. Embedding-sharing communications 
reduce bandwidth requirements further with short, low-dimensional vector message sharing, as a substitute for sharing full 
model parameters, and offer efficiency and scalability despite modest resources. 

The motivation behind SGS-FL is to overcome the bounds of current federated learning protocols. Most of the current 
methods fall short of achieving a balance between the trade-offs between privacy, effectiveness of communication, 
generalizability, and explainability [7], [9], [10]. SGS-FL caters to delivering a one-stop solution with elevated accuracy 
over divergent data, visual explanations of decisions with attention-based modalities, and compatibility with low 
communication overhead. With equity and balanced integration of client submissions, SGS-FL ensures that all nodes 
participating—be their size of data large or small or their modality modal or multimodal—play an influential role during 
model updation, overcoming fairness issues inherent to prior techniques [6], [7], [11], [12]. 

SGS-FL achieves these goals with an architectural and algorithmic combination. A typical generator produces realistic 
cross-modal data with embedding vectors of diverse client modalities, and a multidiscriminator setup per node ensures that 
synthetic data are rigorously evaluated for realism and pertinence. Latent space consolidation with attention identifies and 
prioritises the most information-rich features among clients and decentralises feature selection with independent component 
analysis (ICA) [13] to adjust model updates. These components work towards developing a model that is not only accurate 
but also explainable, generalisable, and efficient [14], [15]. 

Medical image analysis currently underlies mainstream diagnostic pipelines, facilitating early identification and control 
of severe diseases such as lung carcinoma, cardiovascular diseases, and neurodegenerative diseases. However, creating 
trustworthy artificial intelligence (AI) systems in medical imaging is still challenging because of data privacy statutes (e.g., 
HIPAA, GDPR) and local data silos and because of variations in imaging modalities and annotation practices. These issues 
significantly hinder the practicality of centralised machine learning in large, heterogeneous datasets. 

Recent designs such as AdFed (Decentralised FL) and FACL (Federated Attention Consistent Learning) attempt to 
handle decentralisation and interpretability but are limited. AdFed has difficulty dealing with high-order regularisation and 
poor accuracy under heterogeneous data, and FACL guarantees attention consistency but involves high complexity in large-
scale implementations. In contrast, SGS-FL provides a shared generator with multiple discriminator nodes and embedding-
sharing communication and allows effective, interpretable, and nondiscriminative multimodal learning with no central 
coordination. 

The current FL methods are subject to several issues: (1) Reliance on central servers (a single point of failure, 
administrative bottlenecks). (2) Unrealistic assumption of homogeneous data distributions. (3) High computational and 
communication overhead (e.g., FedACS). (4) Excessive energy costs (e.g., federated transfer learning (FTL)). (5) Slow 
training from encryption-based methods. (6) Lack of interpretability and transparency of prediction. (7) Unlike earlier 
decentralised approaches such as AdFed, which remove the central server but lack accuracy under heterogeneous datasets, 
or attention-centric approaches such as FACL, which enhance interpretability but are highly complex and have poor 
scalability, the proposed SGS-FL framework achieves a balance among decentralisation, fairness, and efficiency. By 
incorporating a shared generator, a multidiscriminator structure, and embedding-sharing communication along with 
attention-controlled feature aggregation, SGS-FL overcomes the primary limitations of current federated learning 
approaches. This placement reveals the innovation of our approach, with superior robustness, interpretability, and scalability 
for multimodal medical image analysis. 

The proposed SGS-FL offers a novel federated learning paradigm tailored for medical imaging applications, where 
privacy, transparency, and adaptability are essential. The design of SGS-FL supports collaborative training across diverse 
institutions and modalities without sacrificing performance or operational feasibility. By addressing the core shortcomings 
of prior FL methods, SGS-FL represents a significant step forward in enabling scalable, explainable AI for healthcare [16]. 
The main contributions of this article are as follows: 

• We propose SGS-FL, a fully serverless and decentralised federated learning framework that integrates multimodal 
medical data while preserving privacy. 

• We introduce a shared generator with a multidiscriminator architecture that facilitates cross-modal synthesis and 

ensures robust generalisation. 

• We design an embedding-sharing communication protocol that significantly reduces bandwidth consumption 
compared with weight-sharing methods. 
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• We incorporate attention-based latent space fusion and decentralised feature selection to improve interpretability, 
fairness, and feature relevance across clients. 

• We provide comprehensive experimental validation on lung cancer datasets (CT, PET, and X-ray), which show 
superior performance in classification, segmentation, and synthetic data quality relative to state-of-the-art federated 
learning baselines. 

The remainder of this paper is structured as follows: Section 2 reviews related work in federated learning for medical 
imaging; Section 3 presents the proposed SGS-FL methodology; Section 4 describes the experimental setup and results; 
Section 5 discusses findings, limitations, and implications; and Section 6 concludes the paper. 

2. RELATED WORKS 

  FL has gained significant attention as a privacy-preserving alternative to centralised machine learning in medical 

image analysis. One early approach, FedACS [5], aimed to improve resource utilisation and model performance by 

dynamically selecting clients during training. Although effective in balancing the computational load, FedACS introduced 

considerable overhead because of its complex client sampling procedures. Similarly, [4] targeted medical image 

classification with a focus on privacy preservation. While FTL has shown promise in terms of classification accuracy, it 

comes at the cost of high energy consumption and requires extensive fine-tuning to manage heterogeneous data 

distributions. 

Several methods have sought to extend FL into the domain of medical image segmentation. Federated semisupervised 

learning with pseudolabel denoising [8] and mixed supervised federated learning [17] attempt to address limited labelled 

data by incorporating pseudolabelling strategies. Although these approaches improved segmentation, their reliance on 

pseudolabels introduced sensitivity to label noise, and the implementations were often complex. FKD [12] provides an 

alternative by sharing distilled knowledge rather than full models or data, improving communication efficiency but 

sometimes sacrificing critical information necessary for fine-grained segmentation tasks [18]. 

An overview of available FL techniques presents both promising developments and persisting shortcomings. Methods 

such as Federated Adaptive Client Sampling (FedACS) [5] and Federated Transfer Learning (FTL) [4] seek better 

efficiency and improved resource use. Nevertheless, their computational overhead and energy costs make them inapplicable 

in numerous limited-resource medical centers. Similarly, semisupervised FL with pseudolabel denoising [8] and mixed 

supervised FL [20] extend the usability of small annotated sets, but pseudolabel dependences add noise sensitivity, causing 

poor-quality segmentation. Privacy-oriented architectures, such as homomorphic encryption-based FL [3] and blockchain-

based FL with causal learning [19], ensure data integrity at the price of high latency, encryption overhead, and system 

complexity costs. Without exception, these approaches reflect privacy guarantees, computational efficacy, and real-time 

usability compromises, which are still significant barriers to clinical applicability. 

There have also been architectural advances, such as multibranch prototype FL [21] and federated fusion learning with 

attention [9], which enhance non-IID and heterogeneous data handling but have higher architectural complexity and 

communication costs, hindering scalability. Federated knowledge distillation (FKD) [12] improved the efficiency of 

distilled model sharing but was associated with the risk of losing relevant fine-grained information. In interpretability, 

Federated Attention Consistent Learning (FACL) [7] has advanced attention reliability in prostate cancer research, whereas 

Decentralised FL (AdFed) [10] has removed enabling central servers in the quest for enhanced resilience. However, FACL 

has high complexity in large-scale deployments, and AdFed has accuracy problems under heterogeneous datasets with 

intricate regularisation. More recently, LWR-Net [30] introduced scalable multitask adaptation with nonretraining, 

providing efficiency and domain-agnostic generalizability, although it was not explicitly devised with federated settings in 

mind. In general, these works highlight the need for a solution that balances privacy, interpretability, computational 

efficiency, and fairness across multimodal, heterogeneous sets, and SGS-FL is introduced here to fulfil that need [19]. 

Privacy-preserving FL methods such as horizontal federated learning with homomorphic encryption [20], [21] and 

blockchain-enhanced Federated learning with causal learning [22][23] emphasise data integrity and security. While these 

frameworks achieve strong privacy protection, they face significant drawbacks in practice. Homomorphic encryption 

methods slow training because of encryption overhead, and blockchain-based solutions introduce latency and additional 

system complexity. Moreover, ensuring fairness and managing large-scale deployments remains challenging, as noted in 

comparative studies [24] and evaluations for specific tasks such as breast density classification [25]. 



 

 

225 Al-Shaher et al., Mesopotamian Journal of Big Data, Vol. (2025), 2025, 222–240 

Efforts to enhance generalizability and manage data heterogeneity include multibranch prototype federated learning 

(FEDMBP) [26] and federated fusion learning with attention mechanisms [9]. These methods address the challenge of non-

IID data distributions by introducing architectural innovations such as multibranch models and attention fusion. However, 

these enhancements often come at the cost of increased model complexity and greater communication needs. Similarly, 

FACL [5] focused on consistent attention across nodes for prostate cancer diagnosis, but managing large-scale attention 

consistency proved difficult, and performance gains were limited in highly imbalanced or heterogeneous datasets [27]. 

Moreover, many studies have explored FL in specific medical domains (see Table 1), including CNN-based Federated 

Learning for Cervical Cancer Classification [28], Federated Active Learning for Skin-Lesion Classification [29], and 

FedEYE for Ophthalmology [30]. These platforms demonstrated the feasibility of applying FL across various specialties 

but highlighted challenges related to scalability, flexibility, and periodic annotation overhead. AdFed [10] presented a step 

toward fully decentralised architectures, yet it faced complexities in regularisation and privacy management. Collectively, 

these related works underscore the need for an FL framework that not only preserves privacy but also effectively handles 

multimodal data, reduces communication costs, ensures fairness, and offers transparent, interpretable outputs—gaps that 

the proposed SGS-FL framework is designed to address. 
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Table 1: Summary of existing federated learning methods applied to medical imaging, their applications, evaluation metrics, and key limitations. 

 

3. PROPOSED SHARED GENERATOR-BASED SERVERLESS FL (SGS-FL) 

  The proposed method addresses the following issues: (1) Almost all methods suffer from the complexity of 

combining multimodal data and data heterogeneity. The proposed method effectively handles data heterogeneity through 

robust aggregation and the attention-based approach in multiclient-multimodality fusion. (2) Client feature selection may 

Ref. Method of Federated Learning Application Evaluation Metrics Issues and Shortcomings 

[5] 
Federated Learning with Adaptive Client 

Sampling 

Medical Image Analysis, 

Classification 

Accuracy, training time, resource 

utilisation 

Requires careful selection of clients 

and computational overhead. 

[4] Federated Transfer Learning 

Medical Image 

Classification, Privacy-

preserving analysis 

Classification accuracy, energy 

consumption, and privacy levels 

Energy consumption and privacy 

levels might still need optimisation. 

[8] 
Federated Semi-Supervised Learning with 

Pseudo-Label Denoising 
Medical Image Segmentation Dice coefficient, IoU 

The quality of pseudolabels can 

affect performance, complex 

implementation. 

[31] 
Comparative study of different Federated 

Learning Techniques 

Secure and privacy-

preserving machine learning 

on medical datasets 

Model accuracy, data privacy levels, 

computational cost, robustness 

Comparison complexity and 

ensuring fairness in evaluation. 

[32] 
Federated Learning with Causal Learning and 

Blockchain 

Explainable Medical Image 

Analysis 

Performance, explainability, data 

integrity and security 

Blockchain integration may 

introduce latency; complexity in 

causal learning. 

[3] 
Horizontal Federated Learning with 

Homomorphic Encryption 
Lung Image Classification 

Classification accuracy, encryption 

overhead, and privacy protection levels 

Encryption overhead can slow down 

training, complexity in 

implementation. 

[33] Mixed Supervised Federated Learning Medical Image Segmentation Dice coefficient, IoU 

Handling mixed supervision can be 

challenging, as pseudolabel 

accuracy. 

[26] Multi-Branch Prototype Federated Learning Medical Image Processing 
Accuracy, data heterogeneity 

management, model generalisation 

Managing multiple branches and 

prototypes adds complexity. 

[12] Federated Learning with Knowledge Distillation Medical Image Segmentation 
Segmentation accuracy, communication 

efficiency, and privacy metrics 

Knowledge distillation may lead to a 

loss of some information. 

[34] Generative Adversarial Networks (GANs) 

Medical Image Synthesis, 

Enhancement, 

Augmentation, and 

Segmentation 

Image quality, realism, and 

enhancement capabilities 

GANs can be challenging to train 

due; stability issues. 

[35] 
Federated Active Learning with ensemble-

entropy-based AL 
Skin-lesion classification Performance on dermoscopic datasets 

Depends heavily on the annotation 

strategy; periodic execution 

overhead. 

[36] 
Model-level Attention and Batch-Instance Style 

Normalisation 
Medical Image Segmentation Dice similarity coefficient 

Requires balancing attention 

mechanisms and style normalisation. 

[37] Multimodal Federated Learning Medical image reporting 
Accuracy and quality of medical image 

reports 

Combining multimodal data 

increases complexity; data 

heterogeneity. 

[38] 
Federated Learning evaluation for breast density 

classification 
Breast density classification 

Linear kappa score on test and external 

datasets 

Ensuring fair evaluation across 

diverse datasets. 

[9] 
Federated Fusion Learning with Attention 

Mechanism 
Medical Image Analysis 

Generalizability, performance on 

MedMNIST datasets 

Handling non-IID data and statistical 

heterogeneity. 

[39] Federated Transfer Learning 
Kidney disorder 

identification 

Precision, efficacy of renal abnormality 

detection 

Transfer learning models need fine-

tuning, data heterogeneity. 

[7] Federated Attention Consistent Learning (FACL) 
Prostate cancer diagnosis 

and Gleason grading 
AUC, Kappa score 

Ensuring attention consistency, 

managing large-scale data. 

[40] CNN-based Federated Learning Cervical cancer classification 
Test accuracy in IID and non-IID 

settings 

IID vs non-IID performance 

disparity; small dataset issues. 

[10] Decentralised Federated Learning (AdFed) Cancer survival prediction AUC on survival prediction datasets 
Regularisation and ensuring privacy 

protection can be complex. 

[30] 
Federated Learning platform for ophthalmic 

disease image classification 
Ophthalmology 

Applicability on various neural 

networks and classification tasks 

Deployment specifics might limit 

scalability and flexibility. 

[41] LWR-Net (Learning Without Retraining) 

Multitask medical image 

analysis, general deep 

learning applications 

Accuracy, generalisation across 

domains, computational efficiency 

Eliminates need for retraining when 

adapting to new tasks; efficient 

feature fusion; supports domain-

agnostic generalisation. 
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lead to significant feature loss through latent space collection; this method automatically weighs the importance of each 

client's contribution, reducing the need for explicit client selection and computational overhead. (3) Almost all the proposed 

methods face problems in ensuring fairness in evaluating clients; in this article, the attention-based approach provides a 

unified framework for assessing contributions from different clients, ensuring fairness. (4) The complexity of pseudolabels 

can affect performance; this attentive aggregation ensures that the best latent spaces are used, mitigating the impact of poor-

quality pseudolabels. (5) Most methods depend heavily on annotation strategies and periodic execution overhead. In this 

work, the attention-based approach reduces the dependency on annotation strategies by focusing on the most informative 

features. 

This section explains the proposed SGS-FL (see Fig.1), a fully serverless, generalisable, decentralised multimodal 

learning framework. It shares a single generator model across all clients, while each client maintains multiple unique 

discriminators. Each client has N discriminators (including one for its data), where N is the number of clients (nodes). No 

centralised server is involved. Instead, model updates are collaboratively exchanged and averaged directly between clients. 

 

SGS-FL is motivated by two innovations: 1) Generator sharing with a multidiscriminator architecture, which 

enables cross-modality synthesis and distributed training without central coordination. 2) Embedding-based 

communication, where low-dimensional embeddings are exchanged between clients instead of full model parameters, 

significantly reduces the communication cost and enhances privacy. Each client operates with a shared generator and 

multiple discriminators, one per participating node (including itself), enabling modality specialisation and generalisation 

across the system. 

 

Fig.1:. The SGS-FL architecture shows the shared generator and multidiscriminator design. 

3.1. Generator Sharing and Multidiscriminator Setup 

 This process also reduces the communication overhead because clients need only transmit low-dimensional embeddings 

and not all model parameters or original data. Therefore, the system is efficient and capable of maintaining privacy. The 

adoption of several discriminators also ensures that every client can check samples it produces against all the modalities 

used, hence increasing resistance against data heterogeneity and guaranteeing equal participation of different clients. These 

design choices collectively provide the foundation for facilitating a serverless and scalable federated learning system. 

Considering that we have N clients, each client 𝑖 ∈ {1, . . . . , 𝑁} maintains the shared generator's identical architecture across 

all the clients. A set of N discriminators {𝐷𝑖,𝑗}𝑗=1
𝑁  at each node. The generator G takes as input a concatenated vector of a 

random latent code 𝑧 ∼ 𝑁(0,1) and an embedding vector 𝑒𝑗 ∈ 𝑅𝑑 corresponding to client j. This will produce the synthetic 

image shown in Eq. (1). 

𝑥̃𝑖,𝑗 = 𝐺([𝑧; 𝑒𝑗]). . . . . (1) 

This allows any client to generate data resembling another client's modality by using its embedding. 
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3.2. Discriminator Loss and Feedback Latent Space 

 Each discriminator 𝐷𝑖,𝑗 is trained to distinguish between real images 𝑥𝑗 ∼ 𝑋𝑗 from client j's modality and fake images 𝑥̃𝑖,𝑗 

generated by G. The binary cross-entropy loss for the discriminator 𝐷𝑖,𝑗 is defined in Eq. (2). 

ℒ𝐷𝑖,𝑗
= −𝐸𝑥𝑗∼𝑋𝑗

[𝑙𝑜𝑔 𝐷𝑖,𝑗(𝑥𝑗)] − 𝐸𝑧∼𝑁(0,1)[𝑙𝑜𝑔(1 − 𝐷𝑖,𝑗(G([z; 𝑒𝑗])))]…..(2) 

Each 𝐷𝑖,𝑗 also outputs a latent feature map 𝑍𝑖,𝑗 ∈ 𝑅ℎ×𝑤 from its penultimate layer. All such maps at client i are stacked to 

form 𝑍𝑖 via Eq. (3). 

𝑍𝑖 = [𝑍𝑖,1, 𝑍𝑖,2, . . . . 𝑍𝑖,𝑁]  ∈ 𝑅ℎ×𝑤×𝑁 . . . . . (3) 

This stacked latent space encodes feedback from each peer-discriminator, carrying modality-specific encoding. 

 

3.3. Embedding a sharing-based collaborative discriminator (ESCD) 

 Clients exchange only their embedding vectors 𝑒𝑗 with each other, not the full model weights. This is facilitated by a 

learnable embedding table where each  𝐸 = {𝑒1, . . . . . , 𝑒𝑁} 𝑒𝑗 ∈ 𝑅𝑑 represents one client or modality. 

The embedding-sharing mechanism plays a vital role in enabling collaboration across clients while preserving privacy and 

minimising communication overhead. By exchanging only low-dimensional embedding vectors rather than full model 

weights or raw data, each client gains the ability to generate synthetic samples that reflect the distribution of other modalities 

present in the federation. The embeddings 𝑒𝑗 ∈ 𝑅𝑑 act as compact and abstract representations of the underlying modality-

specific knowledge of client j. When combined with latent codes 𝑧 ∽ 𝑁 (0,1), these embeddings guide the shared generator 

G to produce synthetic data that align with the characteristics of the target modality. This setup allows any client i to 

synthesise data resembling the modality of any other client j, thereby facilitating rich cross-modal learning. 

The collaborative discriminators at each node are specifically designed to leverage these embeddings for modality-

specialised supervision (see Fig. 2). Every discriminator 𝐷𝑖,𝑗 is tasked with distinguishing between real images 𝑥𝑖,𝑗 from 

client j’s modality and the synthetic images 𝑥̂𝑖,𝑗 =  𝐺([𝑧; 𝑒𝑗]) generated via the corresponding embedding. This adversarial 

training approach ensures that the discriminators learn fine-grained features of each modality while pushing the generator 

to produce increasingly realistic and diverse synthetic samples. 

The latent feature maps 𝑍𝑖,𝑗 ∈ 𝑅ℎ×𝑤 extracted by the discriminators' penultimate layers encode rich modality-specific 

information. These are stacked into the aggregated latent space 𝑍𝑖 ∈ 𝑅ℎ×𝑤×𝑁 , capturing the feedback required to inform 

generator updates. 

 
Fig. 2: Embedding-sharing mechanism and collaborative discriminators for cross-modal learning. 
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By sharing embeddings and collaborating through multiple discriminators, the proposed method ensures balanced attention 

to all modalities, reduces the reliance on extensive annotation or client-specific feature selection strategies, and enhances 

the overall generalizability of the federated model. The design of these embedding-sharing collaborative discriminators 

addresses the core challenges of multimodal federated learning: managing heterogeneity, preserving privacy, and achieving 

fair contributions from all participating clients without the need for centralised coordination. 

 

3.4. Client attention-based latent spaces layer (CALSL) 

 The proposed method incorporates a CALSL to refine the collaborative learning process across clients further. Within this 

framework, each discriminator 𝐷𝑖,𝑗 processes input images through several layers, producing a latent feature map 𝑍𝑖,𝑗 ∈

𝑅ℎ×𝑤 at the penultimate layer. This feature map encodes rich spatial and modality-specific information that is critical for 

guiding generator updates. Before aggregation, these feature maps are flattened and transformed into latent vectors, which 

are subjected to an attention mechanism designed to compute importance weights for each client’s latent contribution. The 

attention scores 𝛼𝑗 are computed via a Softmax function applied to the latent vectors. These scores highlight the most 

informative and relevant latent features across all discriminators at a client node. The attention-weighted latent features are 

then used to adjust the internal feature maps, selectively amplifying the spatial representations corresponding to significant 

modalities while suppressing irrelevant or less informative features, Eq. (4). 

Feature adjustment =  𝛼𝑗 ⊙  𝑦𝑖,𝑗 . . . . . (4)  

where 𝑦𝑖,𝑗 represents the label or probability vector output of the discriminator for modality j and where ⊙ denotes 

elementwise multiplication. Following this adjustment, each discriminator produces refined feedback latent spaces, as in 

Eq. (5). 

𝑧̃𝑖,𝑗
𝑓

=  𝐷𝑖,𝑗  (Feature adjustment). . . . . (5) 

This selective adjustment guides the generation of feedback latent spaces 𝑧̃𝑖,𝑗
𝑓

, which are then transmitted for aggregation. 

To ensure fairness and robustness, class-specific weighting is applied during loss computation, giving appropriate 

importance to minority classes and underrepresented modalities. This attention-based design ensures that the final latent 

space fusion emphasises the most valuable features across clients, improving generalisation while addressing challenges 

of heterogeneity and label imbalance in multimodal federated learning. 

CALSL enables efficient aggregation of diversified client contributions through high-value feature prioritisation, label 

imbalance reduction, and redundancy reduction in aggregation across the latent space. This lightweight mechanism renders 

the entire system scalable and interpretable while adding no redundant computational overhead. 

 

3.5. Decentralised feature selection layer 

 In our decentralised learning framework, the feature selection layer enables each node to identify and aggregate the most 

informative and relevant features contributed by its peers. Instead of relying on a central server, each node locally applies 

feature selection to the latent spaces it collects from connected nodes. This ensures that the learning process remains fully 

distributed while effectively prioritising critical features for generator updates. 

The feature selection process is enhanced through the application of independent component analysis (ICA). Each node 

gathers encoded feedback latent spaces from its peers, where the latent spaces correspond to multiple modalities and classes. 

through Eq. (6). 

Feedback latent spaces = {𝑧̌𝑖,𝑗
𝑓

}𝑗=1
𝑚 ,….. (6) 

where 𝑧̌𝑖,𝑗
𝑓

∈ 𝑅𝐻×𝑊×𝑚×𝑁 represents the latent space produced by the j-th discriminator for mmm possible classes or 

modalities. For aggregation, these latent spaces from all connected peers are combined at each node, forming a 𝑍𝑎𝑔𝑔 ∈

𝑅𝐻×𝑊×𝑚×𝑁. where N is the number of peers and m is the maximum number of classes across peers. Each node reshapes 

𝑍𝑎𝑔𝑔 into a matrix suitable for ICA to be 𝑍𝑓𝑙𝑎𝑡 ∈ 𝑅𝑚×(𝐻×𝑊×𝑁), and then ICA is applied locally as in Eq. (7): 

𝑆 = 𝐼𝐶𝐴(𝑍𝑓𝑙𝑎𝑡). . . . . (7) 
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where 𝑆 ∈ 𝑅𝑚×(𝐻×𝑊×𝑁) contains the independent components representing the most statistically independent features 

within the aggregated latent spaces. To align with local data characteristics, the node selects independent components 

corresponding to its own label set size, as in Eq. (8). 

𝑠𝑖,𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = {
𝑠𝑖,1, 𝑠𝑖,2. . . , 𝑠𝑖,𝑙         𝑖𝑓 𝑙 < 𝑚 

𝑠𝑖                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. . . . . (8) 

where 𝑠𝑖 denotes the independent component for the i-th class. These selected components are reshaped back to 𝑧̌𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
𝑓

∈

𝑅𝐻×𝑊×𝑙; thus, the final selected latent space is aggregated across peers as in Eq. (9). 

𝑧𝑓𝑖𝑛𝑎𝑙 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑧̌𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
𝑓

) 𝑅𝑁×𝐻×𝑊×𝑙 . . . . . (9) 

This process allows each node to focus on the most informative and statistically significant features from its peers, 

supporting robust generator updates without centralised processing. The decentralised feature selection not only enhances 

the efficiency of model learning on heterogeneous data but also preserves privacy, as no raw data or full latent tensors are 

transmitted or centrally stored. 
 

4. EXPERIMENTAL RESULTS 

4.1. Experimental Setup 

  To evaluate the performance and generalizability of the proposed SGS-FL framework, we conducted experiments 

using three distinct imaging modalities related to lung cancer classification. The CT node utilised the LIDC-IDRI dataset, 

which contains thoracic CT scans annotated with lung nodules and malignancy ratings provided by multiple radiologists. 

The X-ray node was trained on the NODE21 dataset, which comprises chest X-ray images with precisely annotated lung 

nodules and bounding box labels. The PET node employs data from the NSCLC Radiogenomics dataset (TCIA), providing 

PET‒CT scans for functional and anatomical lung cancer imaging. All the images were resised to a uniform resolution of 

64×64 pixels and normalised to a [−1, 1] range to match the generator and discriminator input requirements. 

Each node trains a shared generator and its local multidiscriminator architecture, exchanging only low-dimensional 

embedding vectors to preserve privacy while enabling cross-modal synthesis. The experiments were conducted on an 

NVIDIA RTX 3090 with 24 GB of memory, and PyTorch was used as the primary deep learning framework. To assess 

statistical robustness, we repeated each experimental configuration 10 times, reporting the mean and standard deviation for 

performance metrics, including classification accuracy, F1 score, and Frechet inception distance (FID), for synthetic image 

quality. All the models were trained for 200 epochs per run via the Adam optimiser with a learning rate of 0.0002 and a 

batch size of 64. 

We utilised 10-fold cross-validation across all datasets. During each iteration, 90% of the data were put aside for 

training, with 10% dedicated to the test sets. Ten percent of the training data were also put aside as the validation set for 

hyperparameter tuning and early stopping. The procedure was repeated across all the folds, and the results were averaged 

across all folds so that statistical soundness was achieved, along with the minimisation of bias due to one particular split. 

4.2. Results 

  4.2.1 Classification Performance 

The proposed SGS-FL framework yields better classification accuracy than do the baseline federated learning (FL) 

methods. In particular, SGS-FL reached an accuracy of 92.5% ± 1.2, a precision of 93.1% ± 1.1, and a recall of 91.8% ± 

1.3. These results are greater than the Federated Adaptive Client Sampling (~88%) and Federated Transfer Learning (~89%) 

results. Although multibranch prototype FL and federated fusion learning with attention methods had equivalent accuracies 

(~90%), they were inconsistent in terms of precision, recall, and F1 score. This finding confirms that the shared generator 

and multidiscriminator structure of SGS-FL, alongside embedding-based collaboration, significantly enhances robustness 

and generalizability across modalities. 
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4.2.2 Segmentation and Localisation Performance 

For medical image segmentation and localisation tasks, SGS-FL also demonstrated significant improvements. It achieves 

a Dice coefficient of 0.83 ± 0.02 and an IoU of 0.76, surpassing federated semisupervised learning with pseudolabel 

denoising (Dice: 0.78, IoU: 0.70) and federated knowledge distillation (Dice: ~0.77, IoU: 0.69). These improvements 

highlight the effectiveness of SGS-FL’s attention-based latent space aggregation and decentralised feature selection, which 

together enable more accurate integration of cross-modal spatial information. Importantly, SGS-FL addresses common 

challenges such as pseudolabel noise and information loss from distillation more effectively than competing approaches 

do. 

4.2.3 Predictive robustness (AUC analysis) 

In terms of overall predictive robustness, SGS-FL achieved an AUC of 0.946 ± 0.01, outperforming federated attention-

consistent learning (FACL, ~0.814) and decentralised federated learning (AdFed, ~0.707) (see Figure 3). This improvement 

is attributed to the dynamic attention mechanisms within SGS-FL, which enable the model to aggregate the most 

informative features across heterogeneous nodes. Unlike FACL and AdFed, which require complex regularisation or 

consistency strategies to cope with non-IID data, SGS-FL adapts inherently to imbalanced and heterogeneous data 

distributions without sacrificing performance. 

 

 

Figure 3: ROC curve comparison of the SGS-FL, FACL, and AdFed methods 

 The quality of the synthetic data generated by SGS-FL, as measured by the Frechet inception distance (FID), further 

underscores the strength of the proposed method. SGS-FL achieves an FID of 21.5 ± 1.1, indicating better synthetic image 

realism and diversity than typical GAN-based federated methods, which report FID values in the range of 28–32. The 

stability of SGS-FL’s shared generator and guidance from modality-specific discriminators contributed to this 

improvement. This result validates the effectiveness of SGS-FL’s generator-discriminator design in producing high-fidelity 

synthetic data suitable for cross-modal learning (see Table 2). 
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Moreover, SGS-FL achieves strong performance with moderate training time and low communication overhead owing to 

its decentralised design and embedding-sharing strategy. This contrasts sharply with the high computational or 

communication costs of homomorphic encryption FL (due to encryption overhead) and federated transfer learning (due to 

high energy requirements). Even methods such as Federated Adaptive Client Sampling and AdFed, while effective in 

certain contexts, suffer from either high training time or complex regularisation demands. SGS-FL’s efficient embedding 

exchange avoids the heavy communication burden of full model weight sharing while maintaining strong privacy 

guarantees and fast convergence, making it well suited for real-world decentralised medical imaging applications. 

 

4.3. Evaluation of interpretability and generalizability 
To evaluate interpretability, we applied gradient-weighted class activation mapping (GradCAM) visualisations to benign 

lung nodule cases across three participating nodes (Fig. 4). Each node processed the same benign input image and produced 

its respective attention heatmap, highlighting the areas most influential in the model’s decision-making. The GradCAM 

outputs from Node 1, Node 2, and Node 3 consistently focused on the benign nodule regions, accurately outlining their 

boundaries and surrounding lung tissue. This uniform attention across nodes demonstrates that the SGS-FL framework 

builds reliable and transparent representations, ensuring that model predictions are grounded in clinically meaningful 

features rather than irrelevant structures. 

For malignant nodule cases (Fig. 5), the GradCAM maps confirmed the interpretability of the SGS-FL architecture. Each 

node delivered attention heatmaps that accurately localised malignant lesions, represented by varying shapes and abnormal 

tissue textures. Node 1 showed specific activations focused on the malignant mass, whereas Node 2 and Node 3 emphasised 

lesion boundaries and pathological features relevant to malignancy. These consistent patterns across various clients and 

imaging modalities validate the significance of the proposed attention-based latent space aggregation and collaborative 

discriminators in supporting robust and interpretable decision-making. 

Table 2: Comparative Federated Learning Results Table 

Method Citation 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

Dice/IoU AUC/Kappa FID Time/Overhead 

SGS-FL (ours) proposed 92.5 ± 1.2 93.1 ± 1.1 
91.8 ± 

1.3 

92.4 ± 

1.2 

Dice: 

0.83 ± 

0.02, 

IoU: 

0.76 

AUC: 0.946 

± 0.01 

21.5 

± 1.1 

Moderate, low 

comm 

Federated Adaptive 

Client Sampling 
[1] ~88 ~87 ~88 ~87.5 — — — High 

Federated Transfer 

Learning 
[2] ~89 ~88 ~89 ~88.5 — — — High energy 

Federated Semi-

Supervised 
(Pseudolabel) 

[3] — — — — 

Dice: 

0.78, 
IoU: 

0.70 

— — Complex 

Federated with 

Homomorphic 
Encryption 

[6] 87 ~86 ~87 ~86.5 — — — 
High encryption 

cost 

Multi-Branch 

Prototype FL 
[8] ~90 ~89 ~90 ~89.5 — — — Moderate 

Fed Fusion 

Learning + 
attention 

[15] ~90 ~89 ~90 ~89.5 — — — Moderate 

Federated 

Knowledge 

Distillation 

[9] — — — — 

Dice: 

~0.77, 
IoU: 

0.69 

— — Comm efficient 

FACL (Attention 

Consistent FL) 
[17] 87 — — — — 

AUC: 

~0.814 
— Moderate 

AdFed 

(Decentralised FL) 
[19] 74 — — — — AUC: ~0.7 — 

Complex reg + 

privacy 
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The generalizability of SGS-FL is investigated by involving unseen lung nodule cases in all nodes and examining the 

resulting GradCAM visualisations (Fig. 6). Despite the scarcity of prior disclosure to these cases, all nodes successfully 

localised the nodule areas in their individual GradCAM outputs. This consistency demonstrates the strong cross-modal 

generalisation capabilities of SGS-FL, which are enabled by the shared generator, multidiscriminator structure, and 

embedding-sharing procedure. The model maintained a reliable focus on the diagnostically relevant areas across varying 

input modalities, underscoring its ability to adapt to new and heterogeneous data without sacrificing performance or 

interpretability. 

These findings collectively highlight that SGS-FL provides both transparent and generalizable predictions across 

distributed client environments. The attention maps generated for both familiar and unseen cases demonstrate the model’s 

capacity to integrate diverse knowledge while maintaining a clinically trustworthy focus on key anatomical markers. This 

ensures the practical viability of SGS-FL for deployment in real-world, multi-institutional medical imaging settings where 

data heterogeneity and the need for explainability are critical considerations. 

 

 
Fig. 4: GradCAM visualisations for benign nodules across Node 1, Node 2, and Node 3, showing consistent attention to nodule 

regions. 

 

4.4. Statistical analysis 

To determine the statistical significance of the enhancements introduced through the proposed SGS-FL system, we ran 

paired t tests on various performance metrics. Tests were run between SGS-FL and baseline federated learning protocols, 

e.g., FedACS and FTL, on classification accuracy and segmentation Dice coefficients. Each experimental configuration 

was run repeatedly 10 times independently with 10-fold cross-validation, resulting in a large sample size against which we 

tested statistically. In each scenario, the null hypothesis was that there was no significant difference between the average 

performance of the SGS-FL scheme and the baseline scheme. The results revealed that SGS-FL had an average accuracy 
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of 92.5% (SD 1.2), which was significantly greater than that of FedACS (88%, SD 1.0) and FTL (89%, SD 1.1), with p < 

0.01 in both instances, hence rejecting the null hypothesis. 

For segmentation performance, the Dice coefficient obtained by SGS-FL (mean 0.83, SD 0.02) was benchmarked against 

Federated Semi-Supervised Learning with Pseudolabel Denoising (0.78, SD 0.03) and Federated Knowledge Distillation 

(0.77, SD 0.03). Paired t tests confirmed that SGS-FL outperformed both competing methods with p < 0.01, highlighting 

the statistical robustness of its segmentation gains. These findings indicate that SGS-FL’s attention-based latent space 

aggregation and decentralised feature selection mechanisms significantly improve spatial representation learning. 

Moreover, the results confirm that the performance advantages are consistent across experimental runs and are not the 

result of random fluctuations. 

We also assessed synthetic image generation quality via the Frechet inception distance (FID). SGS-FL achieves a mean 

FID score of 21.5 (SD 1.1), which is substantially better than the typical scores reported by conventional GAN-based 

federated approaches (28–32). Statistical analysis through paired t tests verified that this improvement was significant, with 

p < 0.01, demonstrating that SGS-FL produces higher-quality synthetic images. These results further highlight the benefits 

of embedding-based communication and attentive feature aggregation in facilitating cross-modal learning while preserving 

data privacy. 

The statistical analysis provides strong evidence that SGS-FL systematically outperforms current federated learning 

schemes in classification, segmentation, and image generation problems. By reporting sample sizes, standard deviations, 

and p values explicitly, the updated section shows the reliability and statistical soundness of the findings. These results 

prove that the enhancements of SGS-FL are not accidental. However, they are the direct result of architectural 

breakthroughs, specifically generator sharing, the integration of multiple discriminators, and attention-aware latent fusion, 

and are thus highly effective in decentralised multimodal medical imaging. 

 
 

 
Fig. 5: GradCAM visualisations for malignant nodules across Node 1, Node 2, and Node 3, highlighting accurate focus on lesion areas. 
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5. Discussion 

 The experimental findings illustrate that SGS-FL achieves statistically significant advances on all test tasks. On ≈1,018 

cases of CT, 10,000 X-ray images, and 211 PET‒CT scans, SGS-FL achieved a classification accuracy of 92.5% ± 1.2 and 

a Dice coefficient of 0.83 ± 0.02. Paired t tests verified that such findings significantly outperformed FedACS (88% ± 1.0, 

p < 0.01) and FTL (89% ± 1.1, p < 0.01). Accordingly, the AUC value of 0.946 ± 0.01 outperformed FACL (~0.814) and 

AdFed (~0.707), with superior robustness for heterogeneous data. Crucially, the FID score of 21.5 ± 1.1 confirmed the 

capacity of SGS-FL to produce realistic synthetic data with superior diversity to that of the GAN-based FL approaches 

(FID ≈ 28–32). These results conform with earlier works that noted scalability and fairness as ubiquitous flaws of FL 

settings, but SGS-FL systematically redressed them by employing embedding-sharing and multidiscriminator 

collaboration. By incorporating interpretability, efficiency, and preservation of privacy, SGS-FL enhances the practical 

application of federated learning in applications of clinical imaging. 

 

Fig. 6: GradCAM visualisations for unseen lung nodule cases across Node 1, Node 2, and Node 3, demonstrating generalizability. 

 

SGS-FL also excels in segmentation tasks, with a Dice coefficient of 0.83 ± 0.02 and an IoU of 0.76, surpassing methods 

such as federated semisupervised learning with pseudolabel denoising (Dice: 0.78, IoU: 0.70) and federated knowledge 

distillation (Dice: ~0.77, IoU: 0.69). These improvements reflect the model’s capacity to localise lung cancer features 

accurately while minimising errors from pseudolabel noise and information loss, which are typical in knowledge distillation 

approaches. The attention mechanisms incorporated in SGS-FL ensure that latent spaces are fused in a way that amplifies 

the most relevant spatial features for segmentation. 

Interpretability was evaluated via GradCAM visualisations for both benign and malignant nodule cases across multiple 

nodes. SGS-FL consistently focuses on clinically meaningful regions, highlighting nodule boundaries and pathological 
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structures, regardless of the client modality or local dataset. This transparency in model reasoning provides an essential 

foundation for clinical acceptance, as it allows practitioners to verify that AI decisions are based on valid anatomical cues. 

The consistency of GradCAM heatmaps across nodes for both seen and unseen cases further validates SGS-FL’s ability to 

generalise its learned knowledge without overfitting to specific client data. 

In terms of synthetic data quality, SGS-FL achieved an FID of 21.5 ± 1.1, outperforming typical GAN-based federated 

approaches that generally fall within the 28–32 range. This improvement highlights the strength of the shared generator 

and multidiscriminator architecture in producing realistic and diverse synthetic samples suitable for training and 

augmentation. High-quality synthetic data are particularly valuable in medical imaging, where privacy concerns limit direct 

data sharing and augmentation resources may be scarce. 

SGS-FL’s efficiency represents another key advantage. Unlike homomorphic encryption-based federated methods, which 

incur substantial computational overhead, or methods such as federated transfer learning, which demand high energy 

consumption, SGS-FL operates with moderate training time and low communication overhead. This efficiency arises from 

its embedding-sharing approach, which transmits low-dimensional embeddings instead of full model weights, significantly 

reducing bandwidth usage while preserving privacy. The fully serverless, decentralised architecture enhances scalability 

and resilience, supporting collaborative learning across institutions without central coordination bottlenecks. 

 
Figure 7: Violin plot of classification accuracy distributions for the SGS-FL, FACL, and AdFed methods. Compared with the baseline 

methods, the SGS-FL method yields higher mean accuracy (92.5%) and tighter variability. 

 

 

6. CONCLUSION 
 This paper introduces SGS-FL, a novel serverless federated learning system with a shared generator, multidiscriminator 

architecture, and embedding-guided communication, aimed at enhancing multimodal and decentralised medical image 

analysis. By employing attention-guided latent space aggregation and decentralised feature selection, SGS-FL addresses 

underlying challenges in federated learning—i.e., heterogeneity, privacy, interpretability, and efficiency—without the 

requirement of a central server. Cross-modal cooperation is possible with minimum communication overhead, and the 

privacy of patient information is ensured. 

 

The experimental validation proved that SGS-FL reliably outperforms the best available federated methods for 

classification, segmentation, and synthetic data creation tasks. In classification, it reached 92.5% ± 1.2 accuracy and 0.946 

± 0.01 AUC, outperforming baselines such as Federated Transfer Learning and Federated Adaptive Client Sampling. For 

segmentation, SGS-FL reached Dice and IoU values of 0.83 ± 0.02 and 0.76, respectively, and notably improved upon peer 

methods that depend on pseudolabel denoising or knowledge distillation. These experiments affirm that SGS-FL reliably 

combines heterogeneous imaging modalities and generates robust, generalizable predictions. 
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In addition to predictive performance, interpretability and explainability have been shown to be key areas of strength for 

SGS-FL. The Grad-CAM visualisations indicated that the system always paid attention to clinically significant lung areas 

in benign and malignant cases, thus improving the credibility and transparency of model outcomes to clinicians. This aspect 

highlights the clinical practicability of SGS-FL, since it provides explainable AI in medicine—essential if such systems are 

to be used in the field. Furthermore, SGS-FL effectively generated synthetic images with a low Frechet inception distance 

(FID = 21.5 ± 1.1) such that the generated images were realistic and varied. This ability to generate synthetic data provides 

an effective route toward mitigating data insufficiency and privacy issues in medical studies. 

 

SGS-FL was also efficient and scalable. By substituting compact embeddings with whole model weights, the system 

reduces communication costs and computation, making it practical to deploy them on actual systems where privacy and 

bandwidth are scarce. Serverless construction also improves scalability and fault tolerance, such that multiple institutions 

are capable of participating in collective learning in the absence of the bottleneck of a single server. 

 

Despite such encouraging contributions, there are certain shortcomings. At present, validation has been limited to just three 

lung cancer imaging modalities, and generalizability to other clinical areas may be limited without further testing. Although 

communication based on embedding significantly enhances efficiency, it may still be susceptible to advanced adversarial 

attacks and hence require more effective privacy-preserving mechanisms in the future. Additionally, the use of more than 

one discriminator per client may pose computational issues in large-scale networks involving hundreds of users. Remedying 

such issues is one of the major avenues for expanding SGS-FL toward its wider clinical applicability. 

 

SGS-FL is one of the critical developments in medical imaging-federated learning. It provides high accuracy, 

interpretability, and privacy preservation while being efficient and scalable. As it continues to grow, SGS-FL can be an 

essential framework for decentralised healthcare systems of AI, providing scalable, interpretable, and privacy-preserving 

analysis of intricate medical data across institutions around the globe. 

 

The real-world practicality of this work is even greater than that of performance measures. By allowing cross-institutional 

collaborative training without the movement of raw medical data, SGS-FL directly addresses one of the greatest barriers to 

adopting AI in healthcare: patient privacy. This renders the framework viable for practical deployment within real-world 

hospital networks, where rigid adherence to the HIPAA, GDPR, and other data privacy laws is mandatory. Additionally, 

its communication-efficient architecture makes SGS-FL viable even within resource-poor clinical settings, increasing 

programmability at the AI level even in settings with limited computational infrastructure. 

 

Compared with state-of-the-art approaches, SGS-FL reveals a distinctive combination of advantages that have never been 

achieved together previously. FedACS and FTL are promising but are costly in energy or computation, whereas AdFed, 

although decentralised, is impaired under heterogeneous data, and FACL brings interpretability at the cost of scalability. 

SGS-FL bridges these gaps at the same time by integrating serverless decentralisation, interpretability, fairness, and 

efficiency into one framework. This makes SGS-FL a next-generation federated learning framework that progresses 

simultaneously with both the theoretical advancement of FL and its practical maturity toward clinical translation. 

 

Interpretability remains the deciding factor for clinicians to trust AI systems. The incorporation of Grad-CAM into SGS-

FL ensures that predictions are not only valid but also clinically relevant and interpretable. This ability to visually justify 

decision-making serves to verify AI output by radiologists and fosters uptake into routine diagnosis workflows. By 

displaying sustained attention at nodule boundaries and pathologic features across modalities, SGS-FL provides evidence 

of reliability, which has the potential to expedite federated AI uptake in routine clinical practice. 

 

In the future, some opportunities are ripe to extend and harden this work. In addition to lung cancer imaging, SGS-FL can 

be tailored to other applications, such as cardiovascular analysis, brain tumor identification, and ophthalmology, where 

multimodal data are becoming prevalent. To guarantee robustness, work will have to delve into countermeasures to 

adversarial attacks of embedding exchanges, tune the multidiscriminator architecture up to large-scale applications, and 

test the framework across multiinstitutional prospective studies. These avenues hold the key to transferring SGS-FL from 

experimental verification to clinical uptake and make it the standard for the privacy preservation of medical AI. 
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