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A B S T R A C T 
Vehicular ad hoc networks (VANETs) serve vehicles and infrastructure systems to communicate in real 

time for critical safety functions and traffic control. The highly mobile nature of VANETs with rapid 

topology changes, high mobility, and frequent disconnections is a very challenging situation for routing 

protocols. Most of the current approaches are static and tend to focus on a single metric rather than being 

flexible in practical environments. This paper introduces a hybrid routing method that is capable of 

maintaining a high packet delivery rate, low delay, and stable connectivity in VANETs with dynamic 

traffic situations. To address these problems, in this paper, we propose the PSOA-CRL, which is a hybrid 

multi-objective routing algorithm that integrates particle swarm optimization (PSO) with actor-critic 

reinforcement learning (A-CRL). The offline PSO component generates a variety of optimal routes. 

where the adaptive CRL just-in-time chooses the best available path. The two-way protocol maximizes 

the trade-off between the packet delivery ratio (PDR), end-to-end delay (E2E), link reliability, energy 

consumption, and routing overhead. A performance evaluation of PSOA-CRL with benchmarks under 

multi-objective optimization (MOO) through network metrics reveal the dominance of PSOA-CRL in 

most of the performance evaluation metrics. The obtained result reveals that the PSOA-CRL has a 97.8% 

packet delivery ratio, 41.3 ms end-to-end delay, and 96.1% link reliability. These results indicate that the 

PSOA-CRL is efficient in realizing reliable, real-time VANET routing and can be practically utilized in 

intelligent transportation systems (ITS).

1. INTRODUCTION 

Vehicular ad hoc networks (VANETs) are of great value to the present intelligent transportation systems (ITS) for vehicular 

communication among vehicles (V2V), and vehicles to infrastructure nodes (V2I) [1]. This connectivity has been considered 

crucial for a number of safety and efficiency applications, including collision avoidance systems, dynamic traffic 

management, and emergency response coordination [2]. However, the nature of vehicular environments is that high node 

mobility, fast topology changes, and intermittent links occur frequently [3], which presents significant challenges to reliable 

and efficient data routing delivery [4]. The most crucial problem is how to model a routing algorithm to handle the multi-

objective features of VANET scenarios [5], [6]. Quality of service (QoS) metrics, such as the packet delivery ratio (PDR), 

end-to-end delay (E2E), link reliability, energy consumption, and overhead, are significantly influenced by routing in 

VANETs [7]. 

Good performance in all of them is a constant challenge and an unexplored area for network fluctuations. Many current 

methods integrate multi-objectives into one weighted function, making single weighted function optimization easier; 

however, the final decision-making process is biased or sub-optimal all the time [8]. Deep reinforcement learning (DRL) 

has also been utilized in the optimization of VANET routing to better accommodate a dynamic network environment and 

improve the QoS features, including PDR, E2E delay, and energy efficiency [9], [10], [11]. In addition, most of the existing 

works are not scalable and do not adapt in real time, which significantly limits their application in VANETs in cases of large 

data and fast mobility. In addition, the stability of the links, which is essential for successful communication, is generally 

underreported by few and can be (wrongfully) ignored even though it leads to more packet loss and overhead in the routing 
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[12]. To address these problems, this paper proposed PSOA-CRL, which is a hybrid multi-objective routing algorithm based 

on particle swarm optimization (PSO) and actor-critic reinforcement learning (A-CRL). 

While PSO is effective in complex solution space exploitation in routing optimization, ACRL is applicable for dynamic 

environment RTAM decision making [13]. The PSO by itself may not respond fast enough to real-time changes, whereas 

the RL may not converge rapidly, as it is randomly initialized. The hybrid PSO and actor-critic RL take advantage of the 

global optimization ability of PSO, as well as the adaptive learning capability of RL, so that the performance of the proposed 

model can be balanced and aimed at an efficient approach. The approach is capable of simultaneously optimizing multiple 

routing objectives (PDR, E2E delay, link reliability, energy, and routing overhead) while maintaining the Pareto-based 

approximation of the solution space. It takes trade-offs between opposing performance into consideration automatically and 

reacts in a timely manner to the variations in network topology induced by vehicle mobility and topology changes [14]. 

The design of the PSOA-CRL is organized in two complementary phases. The first phase is an offline phase that leverages 

PSO to produce a set of diversified initial strategies, while the second phase is an online phase that applies actor-critic RL 

to make fine-grained routing decisions in real time. The proposed approach architecture achieves stable and adaptive routing 

even when the VANET is highly volatile. The PSOA-CRL was evaluated through extensive simulations via utilizing the 

OMNeT++ network simulator combined with the SUMO traffic simulator, which supports realistic vehicular mobility and 

network conditions. The dual simulation environment also ensures the realistic VANET performance, enabling to 

demonstration that the proposed approach is applicable under different traffic congestion and mobility patterns. The objective 

of this work is to develop a routing scheme that can guarantee a high packet delivery ratio, low delay, and good routing 

stability and that can scale and adapt in real-time. The contributions of this paper are as follows: 

 This work proposed a hybrid multi-objective routing algorithm (PSOA-CRL) for VANETs based on the integration 

of PSO with A-CRL. 

 Design a decision-making process via utilizing a two-phase approach that decouples offline global exploration from 

real-time policy refinement to maximize routing performance in dynamic environments. 

 Enhance flexibility and deliverability via exploiting RL feedback based on real-time link quality, mobility pattern, 

and network state. 

 The efficiency of the PSOA-CRL is validated via extensive simulation experiments, and it can achieve better 

performance than conventional and metaheuristic-based routing protocols. 

 The PSOA-CRL has achieved improvements in performance evaluation over the RBMOORPV technique concerning 

PDR, E2E delay, and responsiveness to network dynamics via integrating dual-phase optimization with real-time 

adaptability. 

The significance of this paper lies in that it can provide the possibility of practicing and scalable implementation of VANET 

routing in ITS, requiring low-latency and high-reliability decisions. The novelty of the PSOA-CRL approach is due to its 

two-phase nature that applies an offline global optimization method along with an online adaptive decision mechanism. This 

is in contrast to previous modes of study on VANET routing, which have applied metaheuristic methods or reinforcement 

learning alone. By combining the two disciplines and integrating trust and QoS awareness into the decision-making 

procedure, PSOACRL gives a more comprehensive and realistic routing solution that considers reliability, scalability, and 

adaptability to highly dynamic vehicular environments. 

The rest of the paper is organized as follows: In Section 2, the related work is presented in detail. Next, the PSOA-CRL 

model is provided in Section 3. The experimental results and evaluation are explained in Section 4. The limitations are 

introduced in Section 5. Finally, the conclusion is provided in Section 6. 

2. RELATED WORK 

This section presents related work on the problem of routing as multi-objective optimization (MOO) in VANETs. This 

section is divided into two sub-sections. VANET routing involves trade-offs among PDR, E2E, link reliability, energy 

consumption, routing overhead, and connectivity in highly dynamic environments. MOO methods are often applied to 

address these problems. In [15], the NSGA-II is an algorithm that proposed fast elitist non-dominated sorting, a standard 

approach for multi-objective problems, due to its strong convergence and diversity-preserving properties. However, NSGA-

II is designed for static vehicular environments and is not suitable for dynamic vehicular environments to be applied to 

VANET routing with high mobility. It is effective for static multi-objective optimization problems. In [16], Gaussian 
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mutation according to the harmony search algorithm was proposed to enhance the solution diversity and convergence rate in 

the MOO, but it did not consider the environmental adaptation towards the vehicular domain. Although the scheme 

accelerates the statistical convergence and increases the solution variety, it has the problem that it is not geared toward a real 

VANET environment; thus, its practical performance in terms of metrics such as PDR and E2E delay would be degraded 

under dynamic traffic. Another work in [17] proposed several designs for communication scenarios, but these methods could 

not be easily scaled to real-time routing in VANETs. As they may be effective in small-scale or simulated cases, such 

techniques do not perform well under high node mobility or dense traffic and suffer from both delay and reliability. In [18], 

the PSO-NSGA-II global hybrid algorithm for intelligent parking applications was proposed, which makes decisions about 

delay and energy efficiency in an inherently efficient way; however, this approach is a domain-specific solution, so its 

generality over different contexts of research is limited. The hybrid method can achieve the optimal trade-off between delay 

and energy efficiently in intelligent parking, but it has not been verified for distribution VANET routing, and its scalability 

and flexibility in dynamic traffic are still limited. A subsequent framework introduced adaptive mechanisms towards 

optimizing both the delivery ratio and overhead in a multi-objective manner, but it was found to introduce scalability issues 

under dense traffic [19]. Although it achieves better performance for PDR and overhead under moderate conditions, the 

proposed approach has difficulties in terms of large-scale networks and densification of vehicular traffic, limiting its practical 

deployment. 

 Another work in [20] aimed to optimize and disseminate roadside unit (RSU) placement by means of an evolutionary 

algorithm to ensure the maximization of network coverage and the minimization of infrastructure deployment cost, but such 

an approach does not incorporate dynamic conditioning based on routing behavior, which is still missing. It is extended to 

reduce the deployment cost, and the network coverage is increased; however, the absence of route-aware dynamic adaptation 

makes it less effective in highly mobile VANET scenarios where real-time consideration of QoS metrics is affected. To 

improve real-time performance, a digital twin-based routing model for real-time synchronization and predictive optimization 

was proposed, with scalability issues due to the computational cost [21]. The digital twin method improves predictive 

routing, but it is highly computational and cannot be used in real time for the entire VANET. This work in [22] suggested 

that metaheuristic methods, such as Harris hawk optimization, be employed in cognitive radio VANETs for route selection 

and that load balancing be investigated, which requires many parameters to be tuned to reach optimal results. As an excellent 

route selection algorithm and load balancing algorithm, its performance is strongly affected by its parameters, which makes 

it lack practical value in the dynamic VANET environment. In [23], reliability-focused routing strategies were also explored 

via an enhanced Gaussian mutation harmony search, which improved the performance in high-mobility settings; however, 

these studies were not verified in large-scale environments. This work proposed a scheme that enhances the robustness in 

high mobility, without being evaluated in large-scale VANET networks, with a loss of confidence in the scalability and 

adaptability. In the work of [24], clustering-based multi-objective techniques were also presented to ensure security and 

reliability in VANETs to detect and prevent malicious activities. Although such models enhanced the attack detection, the 

extra communication overhead degraded the performance in a delay-sensitive environment. The method improves security 

and availability; however, it adds additional communication overhead, which weakens delay-sensitive applications and 

overall network performance. The work of [25] suggested a multi-objective routing approach using the Pelican optimization 

algorithm to achieve maximum route reliability for dynamic traffic conditions, but the associated algorithmic complexity 

does not guarantee responsiveness in real-life scenarios. However, most of the existing methods cannot solve these problems 

very well when considering scalability, real-time adaptability, security integration, and computational overhead. While the 

RBMOORP can enhance the reliability of the route, its high computational complexity and low adaptability make the 

RBMOORP less effective for large-scale, real-time VANETs. 

These research gaps warrant further study of lightweight, adaptive, and trustworthy multi-objective routing algorithms 

designed for large-scale VANETs. MOO methods have long been essential for handling conflicting objectives in VANET 

routing. In [26], a new approach called MOTD-DE, which blends Kubernetes-based clusters with differential evolution to 

handle tasks smarter in VANETs, was proposed. It uses deep learning to judge how hard each task is, cutting both run-time 

and resource drain. Tests indicate that it outperforms classical techniques such as PSO, the GA, ACO, and ABC in terms of 

speed and efficiency. The approach reveals good computational efficiency and task planning optimization; however, its 

applicability in the context of real-time vehicular routing with high mobility has not been thoroughly verified. The 

DRLbased work in [27] first presented MOEA-DRL, but it has been attempted on VRPTW, and the multi-objective 

counterpart, MOVRPTW, is still challenging. The MTMO/DRL-AT method combines DRL with a multi-task evolutionary 

algorithm to reduce travel distance, decrease vehicle number, and shorten delays simultaneously. When validated against the 

real world, it is demonstrated to be better than previous methods on standard test sets. Despite the promising results, the 

application of MOEA-DRL to VRPTW is limited, and the MOVRPTW, when deployed in VANETs, is still a challenge. 

MTMO/DRL-AT demonstrates multi-objective enhancements and calls for real-time verification in dynamic vehicular 

networks. During the past decade,  various recent and future generational studies have examined hierarchical and Q-
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learning-based VANET routing to address dynamic vehicle motion mobility and urban environments [28]. By combining 

roadside units (RSUs) with V2X communications and exchanging Q-vectors, distributed multi-agent reinforcement learning 

at intersections is applied to the cross-layer optimization of PDR, reduction in broadcasting overhead, and acceleration of 

learning toward efficient data routing. This hierarchical RL strategy enhances cross-layer optimization as well as learning 

efficiency; however, it may suffer from extremely dense traffic or dynamic topologies. 

DRL-based routing strategies have recently been suggested for VANETs to increase efficiency in dynamic network 

environments [29]. By using the deep Q-network approach for the configuration of next-hop intersections, it integrates 

intersection forwarding and traffic awareness to improve PDR, decrease E2E, and reduce overhead. This work demonstrates 

superiority to existing methods with simulations based on real-world taxi trajectory data. The rate-adaptive scheme is 

proven to achieve PDR and delay gains significantly under both scenarios, whereas its performance for larger and diverse 

VANETs has not been fully verified. Finally, in [30], it was proposed that OptiE2ERL is a reinforcement learning model 

that maximizes energy-efficient routing by considering energy levels, bandwidth, mobility, and traffic. The simulation 

results reveal that OptiE2ERL performs better than models such as LEACH, PEGASIS, and EER-RL in terms of network 

lifetime, energy consumption, and scalability. Dynamic real-time road-level energy consumption adaptation, as achieved 

by OptiE2ERL, is another key contribution to energy-efficient routing for VANETs. 

A comparative summary of the popular multi-objective routing approaches in VANETs is shown in Table 1. The main 

benefits, drawbacks, and performance characteristics of each approach are presented to illustrate its efficiency and 

limitations in dynamic vehicle scenarios. This study offers a clear reflection on current methodologies and the gaps they 

have compared with (PSOA-CRL). 

TABLE I.  SUMMARY OF EXISTING MULTI-OBJECTIVE ROUTING STUDIES 

References Technique Advantages Limitations Key Metrics 

[15] NSGA-II 
Strong convergence, preserves 

diversity 

Not suited for dynamic 

VANETs 
General MOO 

[16] 
Gaussian Mutation with Harmony 
Search 

Enhances diversity and 
convergence 

Lacks real-time VANET 
adaptation 

Convergence, 
diversity 

[17] Multi-objective Harmony Search Effective in small-scale scenarios 
Poor scalability; affected by 

high mobility 
PDR, delay 

[18] PSO-NSGA-II Hybrid 
Efficient delay & energy 
optimization 

Domain specific; limited 
generality 

Delay, energy 

[19] Adaptive MOO Framework 
Optimizes PDR & overhead 

adaptively 

Scalability issues in dense 

traffic 
PDR, overhead 

[20] RSU Deployment Evolutionary 
Maximizes coverage; reduces 
cost 

No routing-aware adaptation 
Coverage, 
deployment cost 

[21] Digital Twin Routing Predictive routing & sync High computational cost 
Delay, predictive 

performance 

[22] Harris Hawks Optimization Route selection & load balancing 
Needs parameter tuning; 
limited practicality 

PDR, load balancing 

[23] 
Reliability-Focused Harmony 

Search 
Improved reliability in mobility Not validated large-scale Reliability, mobility 

[24] Clustering-Based Secure Routing 
Enhances security & attack 
detection 

Extra overhead; delays 
sensitive traffic 

Security, delay, 
overhead 

[25] Pelican Optimization (RBMOORP) Improves route reliability 
High complexity; limited real-

time adaptability 
Route reliability 

[26] MOTD-DE (Diff. Evolution + DL) 
Efficient computation & task 
allocation 

Not fully validated in real-time 
VANETs 

Task allocation, 
efficiency 

[27] MOEA-DRL/MTMO-DRL-AT 
Multi-objective optimization; 

reduces travel & delays 

Needs real-time validation in 

VANETs 

Distance, vehicle 

number, delay 

[28] Hierarchical RL with RSU 
Better cross-layer optimization & 
learning 

Challenges in dense traffic 
PDR, broadcast 
reduction 

[29] 
Deep Q-Network Intersection 

Routing 

Improves PDR, delay & 

overhead 

Scalability in 

large/heterogeneous VANETs 
PDR, delay, overhead 

[30] OptiE2ERL 
Enhances energy efficiency & 
lifetime 

Needs further real-time 
evaluation 

Energy, lifetime, 
mobility 

 

3. METHODOLOGY 

This section explains the proposed hybrid algorithms (PSOA-CRL) based on hybrid multi-objective routing in VANETs. 
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3.1 PSO Hybrid Framework 

This section describes a three-layer framework that combines PSO with A-CRL to enhance VANET routing, as shown 

in Figure 1. Otherwise, the typical solutions that integrate performance measures into one objective, this method remains the 

PSO as a Pareto-solution set by pursuing five objectives (PDR, E2E delay, link reliability, energy, and routing overhead) 

independently. The combinations of PSO and ACRL complement each other. PSO is very quick for global exploration in 

the high solution space dimension but does not respond quickly to real-time network changes. ACRL, on the other hand, is 

good at making adaptive decisions by using continuously updated environmental information, but it has a relatively slower 

convergence rate under random initial conditions. By combining them, the proposed PSOA-CRL finds a middle way: global 

optimization employing PSO and responsiveness in real time using ACRL, which makes it especially interesting for highly 

dynamic and large-scale VANET environments. The first layer provides a simulation of the realistic VANET environment 

with vehicle mobility and wireless link dynamics. The second layer performs off-line multi-objective PSO to seek an 

effective routing strategy, considering further factors such as energy, trust, and QoS priority, thus enabling context-aware 

behavior. The third layer uses ACRL to change routing in real time. The actor chooses next-hop nodes according to the live 

network state, and the critic estimates the results to improve the policy. A monitoring mechanism ensures the robustness of 

re-optimizing if performance deteriorates and if the system remains responsive in dynamic environments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Architecture of the PSOA-CRL framework. 

3.2 PSOA-CRL Algorithms Flowchart 

Figure 2 illustrates the proposed PSOA-CRL framework as a flowchart and indicates the interaction between PSO and A-

CRL to achieve adaptive and intelligent routing in highly dynamic VANET environments. There are two main phases of the 

process. Initially, the system leverages PSO to construct a wide range of candidate routing strategies, promoting diversity 

and adaptability to VANET constraints. There are different parameters, such as transmission range, SNR threshold, buffer 

occupancy limit, and link reliability weight, are associated with the policy. This set of candidate policies is overlaid with 

some real-world constraints to ensure that the policies are feasible and robust. Specifically, the problem settings include the 

minimum SNR requirements, maximum transmission range, buffer size limitations, and minimum link duration constraints. 

Each candidate policy is evaluated against five key objectives, PDR, E2E delay, link stability, energy usage, and routing 

overhead, to identify optimal trade-offs. Rather than combining these objectives into a single metric, we resort to a Pareto-

based multi-objective selection approach to obtain non-dominated policies with Pareto optimality concerning these 

objectives. The learned policies serve as the initial knowledge for the following reinforcement learning. In the subsequent 

phase, A-CRL dynamically selects the optimal next hop on the basis of real-time network states. When there is more than 
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one next-hop node, the system selects the node with the highest priority. Before forwarding, a trust-based filtering 

mechanism assesses each node on the basis of a trust score and checks whether the node is listed in the Certificate Revocation 

List (CRL). A packet is dropped or rerouted via another trusted path if a node is non-trusted. If the trust check is successful 

for the node, the actor selects it for forwarding. The critic assesses the state action pair by looking at the network state that 

the action has caused and computes a QoS-aware reward via performance metrics that are weighted by the class priority of 

that packet, namely, high, medium or low. This reward is used to train the actor and critic modules via temporal difference 

(TD) learning. The performance is tracked in real time to maintain adaptiveness. When some metrics of PDR, E2E delay, 

reliability, energy, and overhead are lower than the predefined threshold, the PSO optimization is re-executed to refresh the 

routing policies concerning the current network state. This feedback mechanism guarantees that the PSOA-CRL framework 

remains responsive, efficient, and robust under the challenging and dynamic conditions frequently encountered in the 

VANET scenario. 

 

 

 

 

 

 

Fig. 2. Flowchart of the proposed PSOA-CRL. 

3.3 Offline Optimization Using PSO 

Algorithm 1 executes offline optimization for routing policies within VANETs via a selection process that is based on 

Pareto’s method. The algorithm begins by creating a specific number of random routing policies. Each policy is initialized 

with parameters within the prescribed bounds and sampled uniformly. Candidate routing strategies are tested within a 

simulated VANET scenario and scored across five essential performance dimensions: packet delivery, delay, reliability, 

energy efficiency, and protocol overhead. The results gathered from previous computations are stored and analysed in pairs 

to extract non-dominated policies, those that represent the optimal trade-offs among the selected objectives. The policies 

selected for the Pareto front represent non-dominated solutions that achieve balanced compromises across all the objectives 

and serve as the final optimized set. The identification of robust and high-quality routing strategies is achieved through this 

offline process before real-time implementation. To evaluate each routing policy candidate during the offline PSO phase, a 

multi-objective fitness function is used. This function quantifies the performance of a given policy in five critical routing 

metrics. It is formally (1) defined as: 

𝑓(𝑥) = [𝑃𝐷𝑅(𝑋), −𝐷𝑒𝑙𝑎𝑦(𝑥), 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥), −𝐸𝑛𝑒𝑟𝑔𝑦(𝑥), −𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑(𝑥)] (1) 
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where: 

𝑥: candidate routing policy. 

𝑓(𝑥):  - objective vector for policy x. 

𝑃𝐷𝑅(𝑋):- To maximize the PDR. 

𝐷𝑒𝑙𝑎𝑦(𝑥): - To minimize E2E. 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥): -To maximize link stability. 

𝐸𝑛𝑒𝑟𝑔𝑦(𝑥): -To minimize energy consumption. 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑(𝑥):  - To minimize routing overhead. 

This vector-based formulation of the objective here makes it possible to utilize Pareto-based MOO, in which PSO seeks out 

and selects multiple non-dominated policies across the entire performance trade-off frontier. 

Algorithm 1: PSO offline optimization for VANETs 

Start 

Input: 

    𝑁_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠            # Number of policies to generate 

    𝑝𝑎𝑟𝑎𝑚_𝑏𝑜𝑢𝑛𝑑𝑠      # Parameter ranges for each policy variable 

    𝑉𝐴𝑁𝐸𝑇_ 𝑀𝑜𝑑𝑒𝑙      # Simulation environment 

Output: 𝑃𝑎𝑟𝑒𝑡𝑜_𝑆𝑒𝑡            # Set of Pareto-optimal routing policies 

Process: 

1 .Initialize an empty Swarm list 

2 .For 𝑖 =  1 𝑡𝑜 𝑁_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠: 

       - Randomly generate a policy with parameters within𝑝𝑎𝑟𝑎𝑚_𝑏𝑜𝑢𝑛𝑑𝑠 

       - Add policy to Swarm 

3 .Initialize empty𝐹𝑖𝑡𝑛𝑒𝑠𝑠_𝐿𝑖𝑠𝑡 

4 .For each policy in Swarm: 

       - Simulate 𝑡ℎ𝑒 𝑉𝐴𝑁𝐸𝑇 𝑚𝑜𝑑𝑒𝑙 via policy𝑥 

       - Measure performance: 𝑓(𝑥)     //calculate by using Eq. (1) 

       - Store results in𝐹𝑖𝑡𝑛𝑒𝑠𝑠_𝐿𝑖𝑠𝑡 

5 .Initialize empty𝑃𝑎𝑟𝑒𝑡𝑜 𝑆𝑒𝑡 

6 .For each 𝑝𝑜𝑙𝑖𝑐𝑦 𝑖 in Swarm: 

-𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 =  𝐹𝑎𝑙𝑠𝑒 

       - For each 𝑝𝑜𝑙𝑖𝑐𝑦𝑗  in Swarm where 𝑗 ! =  𝑖: 

            - If𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐿𝑖𝑠𝑡[𝑗] 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐿𝑖𝑠𝑡[𝑖]: 
                - 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 =  𝑇𝑟𝑢𝑒 

                - Break inner loop; 

       - If not dominated: 

            - Add𝑝𝑜𝑙𝑖𝑐𝑦 𝑖 𝑡𝑜 𝑃𝑎𝑟𝑒𝑡𝑜_𝑆𝑒𝑡 

7. Return𝑃𝑎𝑟𝑒𝑡𝑜 𝑆𝑒𝑡 

End 

 

3.4 Online Decision-Making via the Actor-Critic Model 

The algorithm 2 presents the online decision-making phase of the A-CRL model in The PSOA-CRL for VANET routing is 

designed. It has a policy starting from offline PSO that is utilized as a baseline for routing. The algorithm continues 

monitoring the state of its current network, such as the vehicle speed,  signal-to-noise ratio (SNR), buffer occupancy, and 

link duration. The actor module chooses the next-hop node to forward packets on the basis of this state. This is then rewarded 

by the system after it forwards, where it rates the success or quality of that action. The  temporal difference (TD) error is 

then calculated to update the value function and the policy via (2). 

𝛿 = 𝑉(𝑠) − 𝑉(𝑠′) ⋅ 𝛾 + 𝑟  (2) 
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where: 

     𝛿:      TD error is used for learning. 

     𝑟:      An immediate reward after the action. 

     𝛾:       Discount factor for future value (0 < γ ≤ 1). 

    𝑉(𝑠):  Value of the current state. 

    𝑉(𝑠′): Value of the next state after the action. 

The critic updates its value while the actor tunes the policy with this TD error, so routing steadily sharpens. The loop 

continues to run during a VANET session, enabling ongoing learning and adaptation. 

Algorithm 2: ACRL Online Decision-Making 

Start 

Input: 

    𝑝𝑜𝑙𝑖𝑐𝑦𝑏𝑎𝑠𝑒 = initial routing policies from PSO 

    𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑡𝑎𝑡𝑒 = real-time network state (speed, SNR, buffer, link duration) 

Output: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑝𝑜𝑙𝑖𝑐𝑦 = continuously improved routing policy 

Process: 

Initialize the actor and critic modules with𝑝𝑜𝑙𝑖𝑐𝑦_𝑏𝑎𝑠𝑒 

While the VANET session is active, do 

    Observe 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑡𝑎𝑡𝑒 = [𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠𝑝𝑒𝑒𝑑, SNR, 𝑏𝑢𝑓𝑓𝑒𝑟_𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦, 𝑙𝑖𝑛𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛] 

    action = 𝐴𝑐𝑡𝑜𝑟. 𝑠𝑒𝑙𝑒𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒) 

    result = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑝𝑎𝑐𝑘𝑒𝑡 (action) 

    reward = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑟𝑒𝑤𝑎𝑟𝑑 (result) 

    𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒 = 𝑔𝑒𝑡 𝑛𝑒𝑤 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑒()        //Calculate the temporal difference (TD) error δ via Eq. (2) 

    𝐶𝑟𝑖𝑡𝑖𝑐. 𝑢𝑝𝑑𝑎𝑡𝑒 (𝛿)                                             //Update value function using𝛿 

    𝐴𝑐𝑡𝑜𝑟. 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑡𝑎𝑡𝑒, action, 𝛿)      / /Update policy using𝛿 

        𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑡𝑎𝑡𝑒 =𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒 

End While 

Return𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑝𝑜𝑙𝑖𝑐𝑦 

End 

 

3.5 Integration of the PSOA-CRL Algorithms 

The initial stage is offline optimization for exploring a variety and creating a particle swarm that represents potential routing 

policies and is evaluated according to multiple metrics (PDR, E2E, link reliability, energy and routing overhead). On the 

basis of such evaluations, the algorithm manages to approximate a Pareto-optimal collection of policies that compromise 

between multiple and conflicting objectives. These trained policies are further encoded into a format that is compatible with 

reinforcement learning and helps initialize the actor module of A-CRL. This initialization allows the actor to have sensible 

policy preferences rather than random weights. At the same time, the critic is bootstrapped with value estimates obtained 

from the fitness of the Pareto-optimal policies. The second phase is the online process that enters the ongoing training loop, 

where it watches the current network state, takes action through the actor, and obtains rewards. The Critic’s value function 

is updated based on the TD error given in Eq. (2). This TD error helps the Actor to update its policy. The PSO process can 

be reinvoked periodically to regenerate and encode new policies, which are utilized to update the actor and critic from 

existing policies, ensuring adaptation. Finally, this fusion allows the system to exploit the advantages of global off-line 

optimization as well as real-time learning for a more stable and reactive VANET routing strategy. 

Algorithm 3: Integrate PSO with A-CRL Algorithms. 

Start 

Input: 

    𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡        //Network simulation environment (e.g., VANET scenario) 

    𝑃𝑆𝑂𝑃𝑎𝑟𝑎𝑚𝑠                          //Parameters for PSO 

    𝑅𝐿_𝑃𝑎𝑟𝑎𝑚𝑠                          / /Parameters for Actor-Critic RL 

    𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑡𝑟𝑖𝑐𝑠          //Metrics for assessing routing quality (e.g., delay, PDR) 
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Output: 𝑇𝑟𝑎𝑖𝑛𝑒𝑑 𝐴𝐶𝑅𝐿 𝑀𝑜𝑑𝑒𝑙     //The final Actor-critic model with optimized routing policy 

Process: 

1. Phase 1: Offline Policy Optimization Using PSO 

Initialize Swarm 

For each particle p in Swarm do 

    Simulate p in𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 

    Evaluate the fitness of p using𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡𝑟𝑖𝑐𝑠 

End For 

𝑃𝑎𝑟𝑒𝑡𝑜𝐹𝑟𝑜𝑛𝑡 = Extract Pareto-optimal policies from Swarm 

𝐸𝑛𝑐𝑜𝑑𝑒𝑑𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠 = 𝐸𝑛𝑐𝑜𝑑𝑒 𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠 𝐹𝑜𝑟 𝑅𝐿  (𝑃𝑎𝑟𝑒𝑡𝑜𝐹𝑟𝑜𝑛𝑡) 

2. Phase 2: RL Model Initialization Using PSO Results 

𝐴𝑐𝑡𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡𝑠 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐴𝑐𝑡𝑜𝑟 𝑊𝑖𝑡ℎ 𝐸𝑛𝑐𝑜𝑑𝑒𝑑 𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠 (𝐸𝑛𝑐𝑜𝑑𝑒𝑑𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠) 

𝐶𝑟𝑖𝑡𝑖𝑐𝑉𝑎𝑙𝑢𝑒𝑠 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑟𝑖𝑡𝑖𝑐 𝑉𝑎𝑙𝑢𝑒𝑠(𝑃𝑎𝑟𝑒𝑡𝑜𝐹𝑟𝑜𝑛𝑡) 

𝐶𝑟𝑖𝑡𝑖𝑐𝑊𝑒𝑖𝑔ℎ𝑡𝑠 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐶𝑟𝑖𝑡𝑖𝑐(CriticValues) 

𝐴𝐶𝑅𝐿_𝑀𝑜𝑑𝑒𝑙 = 𝐶𝑟𝑒𝑎𝑡𝑒 𝐴𝑐𝑡𝑜𝑟 𝐶𝑟𝑖𝑡𝑖𝑐 𝑀𝑜𝑑𝑒𝑙 (𝐴𝑐𝑡𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡𝑠, 𝐶𝑟𝑖𝑡𝑖𝑐𝑊𝑒𝑖𝑔ℎ𝑡𝑠) 

//Phase 3: Online Policy Learning and Adaptation 

For episode = 1 to 𝑀𝑎𝑥𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do 

state = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑡𝑎𝑡𝑒 (N𝑒𝑡𝑤𝑜𝑟𝑘𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) 

    While the state is not terminal do 

        action = 𝐴𝑐𝑡𝑜𝑟. 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑐𝑡𝑖𝑜𝑛(state) 

        𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒, 𝑟𝑒𝑤𝑎𝑟𝑑 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝐴𝑐𝑡𝑖𝑜𝑛 (𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) 

        TD error calculation by using eq (2) 

  𝐶𝑟𝑖𝑡𝑖𝑐. 𝑢𝑝𝑑𝑎𝑡𝑒 (State, reward, 𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒) 

        advantage =𝐶𝑟𝑖𝑡𝑖𝑐. 𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) 

 𝐴𝑐𝑡𝑜𝑟. 𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒) 

        state =𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒 

    End While 

        If episode mod 𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑦𝑐𝑙𝑒 = 0 then 

        𝑁𝑒𝑤𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠 = 𝑅𝑢𝑛 𝑃𝑆𝑂 (𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, 𝑃𝑆𝑂_𝑃𝑎𝑟𝑎𝑚𝑠) 

        Encoded =𝐸𝑛𝑐𝑜𝑑𝑒 𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠 𝐹𝑜𝑟 𝑅𝐿(𝑁𝑒𝑤𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠) 

        𝑈𝑝𝑑𝑎𝑡𝑒 𝐴𝑐𝑡𝑜𝑟 (Actor, Encoded) 

        𝑁𝑒𝑤𝑉𝑎𝑙𝑢𝑒𝑠 =𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑟𝑖𝑡𝑖𝑐 𝑉𝑎𝑙𝑢𝑒𝑠(𝑁𝑒𝑤𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠) 

        𝑈𝑝𝑑𝑎𝑡𝑒 𝐶𝑟𝑖𝑡𝑖𝑐(𝐶𝑟𝑖𝑡𝑖𝑐, 𝑁𝑒𝑤𝑉𝑎𝑙𝑢𝑒𝑠) 

    End If 

End For 

Return𝐴𝐶𝑅𝐿_𝑀𝑜𝑑𝑒𝑙 
End 

 

3.6 Enhanced PSOA-CRL Methodology 

This section provides an improved PSOA-CRL methodology for VANETs to augment their routing in an integrative VANET 

term deployment and improve it in terms of energy efficiency, trust, QoS awareness, scalability, and world-based 

deployment. The enhanced model has a similar two-phase architecture, with PSO as the offline optimizer, whereas A-CRL 

is an online learning platform, but it is more capable of resisting network failure and adaptation through the complete routing 

function. The main design criteria include maximizing PDR, minimizing E2E, improving link reliability, minimizing 

energy, minimizing routing overhead, and new performance metrics for more realistic conditions. 

3.6.1 QoS-Awareness integration 

To handle different QoS requirements ranging from emergency messages to information technology, in VANETs, the routing 

mechanism adopts a service classification strategy. A QoS class is associated with each data packet and affects its routing 

restrictions. High-priority traffic, such as emergency messaging, is delivered over paths with low delay and high reliability, 

while for low-priority services, energy efficiency becomes more important. The actor module uses the QoS class as an input 

for adaptive and service-aware routing decision-making. Algorithm 4 develops such logic by interpreting the packet's QoS 
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level, fulfilling the routing demand on the basis of the QoS level, and then scoring all potential paths to select the best path; 

see (3). 

Fitness(𝑝) = {𝑓1(𝑝), 𝑓2(𝑝), 𝑓3(𝑝), 𝑓4(𝑝), 𝑓5(𝑝)}  (3) 

where: 

𝑓1(𝑝):  𝑃𝐷𝑅(𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒) 

𝑓2(𝑝):  Delay (𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒) 

𝑓3(𝑝):  Reliability  (𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒) 

𝑓4(𝑝):  Energy (𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒) 

𝑓5(𝑝):  Overhead (𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒) 

𝑝      ∶ A routing-in policy. 

𝑓1𝑡𝑜 𝑓5 ∶   Individual objective functions. 

Algorithm 4: QoS-Aware Routing Decision 

Start 

Input: 𝑃𝑎𝑐𝑘𝑒𝑡, 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑃𝑎𝑡ℎ𝑠, 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑡𝑒 

Output: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑃𝑎𝑡ℎ 

Process: 

 𝑄𝑜𝑆𝐶𝑙𝑎𝑠𝑠 =𝑃𝑎𝑐𝑘𝑒𝑡. 𝑄𝑜𝑆_𝐶𝑙𝑎𝑠𝑠 

 If 𝑄𝑜𝑆 𝐶𝑙𝑎𝑠𝑠 = "𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦", then 

       Requirements = {𝐿𝑜𝑤_𝐷𝑒𝑙𝑎𝑦, 𝐻𝑖𝑔ℎ_𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦} 

   If 𝑄𝑜𝑆𝐶𝑙𝑎𝑠𝑠 = "𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒", then 

       Requirements = {𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒_𝐷𝑒𝑙𝑎𝑦, 𝑆𝑡𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘} 

   If 𝑄𝑜𝑆𝐶𝑙𝑎𝑠𝑠 = "𝐼𝑛𝑓𝑜𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡", then 

       Requirements = {𝐸𝑛𝑒𝑟𝑔𝑦_𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦} 

   Else 

       Requirements = {𝐵𝑒𝑠𝑡_𝐸𝑓𝑓𝑜𝑟𝑡} 

   End If 

 

3.𝐵𝑒𝑠𝑡 𝑆𝑐𝑜𝑟𝑒 =  ∞ 

   𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑃𝑎𝑡ℎ = NULL 

 

4 .For each path in 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑃𝑎𝑡ℎ𝑠 do 

       Score = 0 

       If "𝐿𝑜𝑤 𝐷𝑒𝑙𝑎𝑦" in Requirements then 

           𝑆𝑐𝑜𝑟𝑒 =  𝑆𝑐𝑜𝑟𝑒 +  𝑝𝑎𝑡ℎ. 𝐷𝑒𝑙𝑎𝑦 

       End If 

       If "𝐻𝑖𝑔ℎ 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦" in Requirements then 

           𝑆𝑐𝑜𝑟𝑒 =  𝑆𝑐𝑜𝑟𝑒 −  𝑝𝑎𝑡ℎ. 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
       End If 

       If "𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦" in Requirements then 

 𝑆𝑐𝑜𝑟𝑒 =  𝑆𝑐𝑜𝑟𝑒 +  𝑝𝑎𝑡ℎ. 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

       End If 

       If "𝑆𝑡𝑎𝑏𝑙𝑒 𝐿𝑖𝑛𝑘" in Requirements then 

 𝑆𝑐𝑜𝑟𝑒 =  𝑆𝑐𝑜𝑟𝑒 −  𝑝𝑎𝑡ℎ. 𝐿𝑖𝑛𝑘 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

       End If 

 

       If 𝑆𝑐𝑜𝑟𝑒 <  𝐵𝑒𝑠𝑡_𝑆𝑐𝑜𝑟𝑒 then 

           𝐵𝑒𝑠𝑡 𝑆𝑐𝑜𝑟𝑒 = Score 

           𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑃𝑎𝑡ℎ = path 

       End If 
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   End For 

5 .Return𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑃𝑎𝑡ℎ 

End 

3.6.2 Energy-Aware Fitness Evaluation: 

The energy consumption metric is considered an important criterion that needs to be optimized to make the PSOA-CRL 

framework more effective. The overall energy expenditure to form a routing path is obtained through the sum of the 

transmission energy for every hop, comprising the base transmission energy and the amplifier energy multiplied by the 

squared distance raised to the path loss exponent. The procedure is described in Algorithm 5. On the basis of this metric, 

the framework favours energy-aware paths to maximize network lifetime and evenly distribute energy consumption among 

nodes. The total energy is calculated between a routing path via (4): 

𝐸𝑡𝑜𝑡𝑎𝑙 ∑ (𝐸𝑒𝑙𝑒𝑐  𝑖𝑛 . 𝑘 +  𝜀 amp
 .  𝑘 . 𝑑)𝑛

𝑖=1   (4) 

where: 

𝐸total :  Total energy consumed for a full route. 

𝐸elec :   Electronic circuitry energy per bit. 

𝜀amp :   Transmit amplifier energy per bit per m2. 

𝑘:      Packet size in bits. 

𝑑:      Distance of hop 𝑖. 

 𝑛:     Path loss exponent (2.5). 

Algorithm 5: Energy-aware fitness 

Start 

Input: 

        𝑃𝑎𝑡ℎ =  𝑙𝑖𝑠𝑡 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑝𝑜𝑙𝑖𝑐𝑦 

 𝐸𝑡𝑥 =  𝑏𝑎𝑠𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 

    𝐸𝑎𝑚𝑝 =  𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 𝑛 =  𝑝𝑎𝑡ℎ 𝑙𝑜𝑠𝑠 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 

Output: 𝐸𝑡𝑜𝑡𝑎𝑙 =  𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

Process: 

1.𝐸𝑡𝑜𝑡𝑎𝑙 =  0 

2 .For all consecutive hop (𝑖, 𝑗) in Path do 

       𝑑𝑖,𝑗 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) //calculate via eq (4) 

   End For 

3 .Return𝐸_𝑡𝑜𝑡𝑎𝑙 
End 

3.6.3 QoS-Aware Reward Computation in (A-CRL) 

This part presents a revised reward model for the actor-critic framework, which integrates quality-of-service (QoS)-based 

traffic priorities in addition to some fundamental routing performance metrics so that the agent can learn rewards that are 

reflective of actual traffic requirements. It begins by giving each packet a weight, determined via its class of service (low, 

middle and high), with high-priority data receiving the most weight. The final reward is defined as a weighted sum that 

balances the packet delivery rate and link reliability with maximum delay and energy consumption, with weighing factors 

determining the impact of the different factors. This mechanism helps the learning model select valuable traffic with a trade-

off between efficiency and reliability. The QoS-aware reward is calculated via (5): 

𝑅 =  Energy ⋅ 𝛿 −  Reliability ⋅ 𝛾 +  Delay ⋅ 𝛽 −  PDR ⋅ 𝛼  (5) 

 

where: 
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    𝑅: Total reward value assigned by the agent. 

   𝛿, 𝛾, 𝛽, 𝛼: Scaling factors depending on the QoS class (high, medium, or low). 

The weighting factors in Eq. (5) choose the QoS metrics that represent high and medium importance in vehicular networks. 

Since packet delivery and link reliability directly represent the success of communication, more emphasis is placed on them, 

whereas delay and energy are considered secondary penalties to prevent excessive latency or resource waste. This 

prioritization was chosen a priori, on the basis of qualitative results obtained in preliminary trials and is consistent with the 

general practice in  actor‒critic models of multiple objective optimization within the reward function to ensure diverse 

outputs but without a single component dominating [1]. 

Algorithm 6: QoS-Aware Reward Computation 

Start 

Input: 

  𝑄𝑜𝑆𝐶𝑙𝑎𝑠𝑠           //High, Medium, or Low 

  𝑃𝐷𝑅           //Packet delivery ratio 

  𝐷𝑒𝑙𝑎𝑦         //End-to-end delay 

  𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦   //Link reliability 

  𝐸𝑛𝑒𝑟𝑔𝑦        //Energy consumption 

  𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎, 𝑔𝑎𝑚𝑚𝑎, 𝑑𝑒𝑙𝑡𝑎     //Scaling coefficients 

Output: 𝑅𝑒𝑤𝑎𝑟𝑑        //Computed reward value 

Process: 

  If 𝑄𝑜𝑆𝐶𝑙𝑎𝑠𝑠 is high: 

    𝑤𝑒𝑖𝑔ℎ𝑡 = 1.0 

  Otherwise, if 𝑄𝑜𝑆𝐶𝑙𝑎𝑠𝑠 is medium: 

    𝑤𝑒𝑖𝑔ℎ𝑡 = 0.7 

  Else: 

    𝑤𝑒𝑖𝑔ℎ𝑡 = 0.4 

Calculate 𝑅𝑒𝑤𝑎𝑟𝑑 via eq (5): 

  Return Reward 

End 

3.6.4 Trust-Aware Decision Making 

Algorithm 7 adds trust checking to the same reinforcement-learning routing engine for vehicular networks. It begins by 

booting both the actor and the critic with policies pruned by the PSO to boot start learning. Trust scores for each node surface 

from its past forwards, current battery state, and the QoS targets of messages. Nodes rated below a set threshold drop out of 

the next-hop pool, shrinking choices but increasing reliability. The actor then picks the best path among the trusted 

contenders. Continuous updates to the actor and critic ensure adaptability to network changes; promote routing through 

reliable, energy-efficient, and QoS-compliant paths; and improve overall network stability and performance. The trust score 

is calculated by combining its forwarding behavior and remaining energy to evaluate the trustworthiness of a neighboring 

node, as in (6). 

𝑇𝑖 = (
𝐸𝑖

𝐸𝑚𝑎𝑥
) . 𝑊2 +

𝐹𝑖

𝑆𝑖
 . 𝑊1                  (6) 

where: 

 𝑇𝑖 : Trust score for node 𝑖. 

𝐹𝑖: Packets successfully forwarded by node𝑖. 

𝑆𝑖: Packets received by node𝑖. 

𝐸𝑖: Residual energy of node𝑖. 

𝐸𝑚𝑎𝑥:  Initial (maximum) energy of nodes. 

𝑊1, 𝑊2: Weights for behavior and energy impact. 

Algorithm 7: Trust score computation and filtering 
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Start 

Input: 

   𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠                           //list of neighbor nodes    

   𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝑆𝑒𝑛𝑡                      //packets sent to each neighbor 

   𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑       //packets forwarded by each neighbor 

   𝑇𝑟𝑢𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑            //minimum acceptable trust score    

Output: 

   𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠              //list of neighbors with𝑡𝑟𝑢𝑠𝑡 >=  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Process: 

  Initialize 𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 as empty list 

: For each node in Neighbors 

 by using eq (6) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑇𝑟𝑢𝑠𝑡𝑆𝑐𝑜𝑟𝑒 

 If𝑇𝑟𝑢𝑠𝑡𝑆𝑐𝑜𝑟𝑒 >=  𝑇𝑟𝑢𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

      Add a node to𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 

  Return𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 

End 

 

3.6.5 Scalability considerations 

PSOA-CRL was explicitly designed to work for large-scale and dense VANETs in a scalable manner. Unlike the 

pseudorandom key generation stage, there is no continuous execution of PSO re-optimization, as its events are driven only 

by predefined quality measures when vital performance indicators such as routing overhead or PDR fall below certain 

thresholds. This guarantees that expensive re-optimizations are called rarely and that the cost is spread out in time. The actor–

critic module, on the other hand, only executes its local neighborhoods where each forwarding decision is based on the 

neighbors that have exchanged their trust information and are within the communication range. Thus, the computational 

complexity is ranked with the local-density rather than the total number of vehicles. Our design allows an upper bound on 

the latency and cures complexity into constant factors even in high VANET dense situations to retain real-time 

responsiveness. Most importantly, this scaling behavior is consistent with current benchmarks for VANET routing protocols 

in general, hence can indeed validate that PSOA-CRL remains effective and stable when networks are scaled up. 

3.7 Benchmarking 

This paper shows benchmark results of the proposed hybrid PSOA-CRL routing with four well-known MOO algorithms for 

a dynamic VANET scenario. MOHS generalizes Harmony search using a Pareto-based selection; however, it suffers from 

the difficulty of preserving population diversity. GMHS improves MOHS by adding a Gaussian mutation for finer search 

adjustments; however, it may still converge prematurely without diversity control. NSGA-II is a well-known evolutionary 

algorithm that effectively balances convergence and diversity but requires large populations and longer computation times, 

limiting its real-time applicability. RBMOORPV employs Pelican optimization, which focuses on reliable links and achieves 

stable routing offline but lacks online learning, reducing responsiveness to fast network changes. In general, PSOA-CRL 

achieves superior performance by generating well-distributed, high-quality Pareto-optimal routes with dynamic adaptability 

suited for VANETs. 

3.8 Simulation parameters 

The PSOA-CRL protocol was evaluated in an urban VANET via a simulation built with OMNeT++ and SUMO over a 5×5 

grid for 600 seconds. A total of 200 vehicles and a maximum speed of 50 km/h used IEEE 802.11p (300 m range, 20 dBm), 

with CBR traffic generating 10 packets/sec (512 bytes). The routing was updated every 2 seconds. The key metrics included 

PDR, delay, reliability, energy, and overhead, with a 0.25 overhead threshold triggering re-optimization. Trust filtering of 

≥0.6 and 1000 units of initial energy ensures secure, efficient routing. The reinforcement-learning agent learned across 300 

episodes, whereas the particle swarm optimizer handled 40 particles for 50 iterations, enabling adaptive and high-quality 

routing under dynamic conditions, as presented in Table 2. 

 

 

TABLE II.  SIMULATION PARAMETERS AND CONFIGURATION FOR THE VANET. 



 

 

254 Hamdi et al., Mesopotamian Journal of Big Data, Vol. (2025), 2025, 241–260 

Parameter Value 

Simulation Tool OMNeT++ version 5.6.2 with SUMO (Veins) version 

1.14.1 

Simulation Time 600 seconds 

Map Type Urban grid (5x5) 

Number of Vehicles 200 

Mobility Model SUMO (Car Following Model) 

Max Speed 50 km/h 

Communication Range 300 meters 

MAC Protocol IEEE 802.11p 

Transmission Power 20 dBm 

Packet Size 512 Bytes 

Traffic Type CBR (Constant Bit Rate) 

Packet Rate 10 packets/sec 

Routing Update Interval 2 seconds 

Evaluation Metrics PDR, E2E Delay, Link Reliability, Energy, and Overhead 

Trust Threshold 0.6 

Energy Initial per Node 1000 units 

Path Loss Exponent (n) 2.5 

RL Episodes 300 

PSO Particles 40 

PSO Iterations 50 

Overhead Calculation Control pkts/Data pkts ratio 

Overhead Metric Threshold 0.25 

 
For all the experiments and protocols, the parameter values in Table 1 were kept fixed to ensure fairness and reproducibility. 

By doing so,  we can ensure a balanced comparison of the algorithms, where any differences in performance are due to the 

algorithms themselves and not some selective parameter tuning. While an exhaustive sensitivity analysis would be outside of 

our scope here, we recognize the need for it and parameter tuning strategies to ensure that performance gains are consistent 

across different datasets. 

4. EXPERIMENTAL RESULTS AND EVALUATION 

This section presents the experimental work and the analysis of the results. The section is composed of two subsections: the 

first is the MOO optimization, described in Section 4.1, and the second is the simulation-based evaluation, outlined in Section 

4.2. 

4.1 Multi-objective optimization evaluation (MOO) 

This section reviews key evaluation metrics for MOO algorithms and compares the proposed PSOA-CRL with the 

benchmarks NSGA-II [13], GMHS [14], MOHS [15], and RBMOORPV [23]. The assessment uses four core metrics, set 

coverage, hypervolume, the delta metric, and generational distance, to evaluate solution optimality, convergence, and 

diversity across the objective space. 

Figure 3 shows that in the set coverage metric, the PSOA-CRL achieved a higher value of 0.91, while RBMOORPV is 0.78, 

NSGA-II is 0.76, GMHS is 0.74, and MOHS is 0.73. This indicates its ability to consistently present dominant Pareto-

optimal solutions. The result reflects the strength of combining the PSO’s global search with actor‒critic learning’s adaptive 

refinement, allowing the PSOA‒CRL to deliver more robust routing strategies in dynamic VANET environments. 

Figure 4 shows the hypervolume, which measures the volume in the objective space covered by the Pareto front. A higher 

value means better convergence and diversity. The PSOA-CRL achieved the highest value of 0.86, whereas NSGA-II 0.75, 

RBMOORPV 0.72, GMHS 0.70, and MOHS 0.66. The proposed method covers a larger and more efficient area of the 

solution space, which means that its results are both high quality and well spread. This is critical in real-time applications 

where diverse routing trade-offs (PDR, E2E delay, energy, link reliability, and routing overhead) must be available. The high 

hypervolume is a direct outcome of the exploration power of the PSO combined with the adaptive learning of the actor-critic 
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model, enabling the PSOA-CRL to maintain a diverse but converged set of routing solutions suitable for dynamic VANET 

environments. 

Figure 5 presents the generational distance metric, which reflects the proximity of solutions to the true Pareto-optimal front. 

The PSOA-CRL method achieved 0.08, whereas the NSGA-II reached 0.12, the GMHS reached 0.14, the RBMOORPV 

reached 0.16, and the MOHS reached 0.18. A lower value of the generation distance metric indicates better convergence. 

This result proves that the solutions produced by the PSOA-CRL are closer to the ideal, ensuring optimal routing decisions 

in practice. This superior convergence is driven by A-CRL, which continuously fine-tunes routing policies on the basis of 

real-time feedback, surpassing the static or nonadaptive nature of competing approaches. 

Figure 6 presents the delta metric, which reflects the distribution uniformity among the Pareto solution sets. The PSOA-CRL 

achieved 0.18, whereas the NSGA-II reached 0.27, the GMHS reached 0.30, the RBMOORPV reached 0.31, and the MOHS 

reached 0.32. A lower value indicates better diversity and balanced spread. Therefore, PSOA-CRL not only optimizes the 

routes but also ensures that they are balanced, providing an ample weighted range for the decision maker’s options. The 

increased diversity is due to the global search capability of PSO and local refinement provided by reinforcement learning 

working together to maintain a well-spread set of solutions along the Pareto front. 

 

 
 

Fig. 3. Set the coverage metric. Fig. 4. Hypervolume metric. 

 

 

Fig. 5. Generation distance metric. Fig. 6. Delta metric. 
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4.2 Simulation-based evaluation 

This section evaluates the PSOA-CRL algorithm via five metrics and analyzes the results in an urban VANET environment. 

Its adaptability, effectiveness, and dominance over benchmark protocols in all metrics are clearly achieved. 

As shown in Figure 7, PSOA-CRL achieves a PDR of 97.8%, which is superior to those of RBMOORPV (94.2%), NSGA-

II (92.1%), GMHS (91.4%), and MOHS (89.5%). The highest value of PDR performance is derived from trust-aware routing 

and dynamic path optimization reinforced with QoS-aware reward reinforcement learning. This guarantees dependable 

results under dynamic VANET conditions. 

In Figure 8, PSOA-CRL achieves a lower value of the E2E delay metric of 41.3 ms, which is superior to that of RBMOORPV 

at 54.8 ms, NSGA-II at 60.1 ms, GMHS at 66.7 ms, and MOHS at 70.2 ms. The reason for this reduction is real-time 

responsive adaptation to congestion and link quality, together with trust and QoS-aware reward mechanisms that strengthen 

low-latency stable routes crucial for delay-sensitive applications in VANETs. 

Figure 9 shows that the link reliability metric of the PSOA-CRL, which is 96.1% higher than that of the RBMOORPV, is 

91.3%, that of the NSGA-II is 89.6%, that of the GMHS is 88.4%, and that of the MOHS is 85.7%. This reflects the ability 

of the PSOA-CRL to maintain stable connections by avoiding low-trust or weak-signal nodes. Its actor-critical learning 

model adapts routes on the basis of real-time link quality and trust feedback, ensuring reliable communication, which is 

essential for safety and data integrity in VANETs. 

Figure 10 shows the evaluation of the energy consumption metric. The PSOA-CRL achieves 184.2 J, outperforming 

RBMOORPV 207.5 J, NSGA-II 213.7 J, GMHS 219.3 J, and MOHS 224.1 J. This efficiency results from routing that avoids 

redundant hops and overloaded nodes, extends the network lifespan, and balances energy use. The QoS protocols and trust-

aware decisions help select energy-efficient routes and evenly distribute network loads, enhancing VANET scalability. 

  

Fig. 7. Packet Delivery Ratio metric. Fig. 8. End-to-End Delay metric. 
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Fig. 9. Link reliability metric. Fig. 10. Energy consumption metric. 

Figure 11 presents the routing overhead metric. The overhead metric, which is the count of control packets divided by data 

successfully delivered in roadside networks, is crucial in VANETs to prevent network congestion and maintain scalability. 

The PSOA-CRL presents the lowest value of overhead of 0.21, whereas the RBMOORPV is 0.31, the NSGA-II is 0.35, the 

GMHS is 0.37, and the MOHS is 0.41. This efficiency stems from the hybrid design of the PSOA-CRL, which combines 

offline PSO policy generation with online actor-critical learning for adaptive route refinement. Its threshold-triggered re-

optimization limits unnecessary updates, ensuring stable routing and minimal control traffic. Importantly, PSOA-CRL 

remains below the predefined acceptable overhead threshold of 0.25, demonstrating its effectiveness in managing 

communication resources in dynamic VANETs. Throughout the experiments, the routing overhead always remained below 

the set threshold, so re-optimization was very infrequent. In this way, for any number of vehicles considered, the runtime 

was highly dominated by lightweight local updates, which maintained constant growth as the number of vehicles increased 

and supported the PSOA-CRL scalability. 

 

Fig. 11. Routing Overhead Metrics. 

4.3 Performance Analysis of the PSOA-CRL Protocol 

Table 3 shows that the PSOA-CRL significantly outperforms the other four multi-objective routing protocols. Among the 

MOO metrics, the proposed PSOA-CRL achieves the highest set coverage at 0.91, the lowest delta value of 0.18, and the 

smallest generational distance at 0.08, which are indicators of both diverse solutions and strong convergence toward the 

optimal front. Additionally, it has the highest hypervolume at 0.86, reflecting comprehensive and well-balanced coverage of 

the objective space, while from a network performance standpoint, the PSOA-CRL has the best network systems in terms of 

a packet delivery rate of 97.8%, the lowest end-to-end delay of 41.3 ms, and the highest link reliability at 96.1%, while 

consuming the least energy of 184.2 J. Additionally, it has the lowest routing cost at 0.21, demonstrating its high 

communication efficiency. This performance is largely attributed to its hybrid design, which combines an offline PSO system 

with a real-time A-CRL system and trust-based filtering to reduce unnecessary control traffic. The findings confirm that the 

PSOA-CRL is a balanced, adaptable, and efficient routing protocol, making it especially suitable for the fast, dynamic, and 

demanding environments of VANET systems. The RBMOORPV result values are shown in this paper, such as PDR, delay, 

and routing overhead, which are different from the results of this paper because RBMOORPV is implemented again on the 

basis of our simulation scenario with 200 vehicles and a unified configuration for all protocols. These variances are expected 

and acceptable; they represent the real-time performance of the protocols under the same conditions in our work. This 

suggested verification indicates that the PSOA-CRL is a well-balanced, provoking, and promising routing protocol, and its 

performance is relatively sufficient, especially for the VANET networks under high-speed and dynamic road traffic 

scenarios. Moreover, the algorithm also exhibits high and steady performance in high-vehicular-density scenarios, which 

demonstrates its adaptivity in large-scale VANET systems. This is because of the localized A-CRL decision and the event-

driven PSO re-optimization, collectively resulting in fast convergence and reduction in computational cost, leading to real-

time adaptability. 

TABLE III.  PERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN VANETS. 



 

 

258 Hamdi et al., Mesopotamian Journal of Big Data, Vol. (2025), 2025, 241–260 

Metric PSOA-CRL RBMOORPV NSGA-II GMHS MOHS       Summary 

Set Coverage 0.91 0.78 0.76 0.74 0.73 Most dominant solutions 

Delta Metric 0.18 0.34 0.27 0.30 0.36 Best diversity 

Hypervolume 0.86 0.72 0.75 0.70 0.66 Largest covered space 

Generational Distance 0.08 0.16 0.12 0.14 0.18 Closest to the optimal front 

PDR (%) 97.8 94.2 92.1 91.4 89.5 Highest packet success 

E2E Delay (ms) 41.3 54.8 60.1 66.7 70.2 Fastest routing decisions 

Link Reliability (%) 96.1 91.3 89.6 88.4 85.7 Most stable routes 

Energy Consumption (J) 184.2 207.5 213.7 219.3 224.1 Best energy efficiency 

Overhead 0.21 0.31 0.35 0.37 0.41 Most communication-efficient 

 

5. LIMITATIONS 

The PSOA-CRL framework was tested via simulation (OMNeT++ and SUMO). Although the improvements on the 

baselines are substantial, there remain some drawbacks. First, there remain some other uncertainties in real vehicle networks 

that were not well addressed through the simulations, e.g., hardware limitations of nodes, heterogeneous communication 

technologies, and even unpredictable driver behaviors. Second, even though the 200 vehicles scaled best among the high-

density phase-based deployments, the computational overhead that such a model would place on the OBU in real 

deployments needs to be re-examined. Finally, only a few configuration parameters (the trust threshold and PSO iteration 

settings) were experimented; in order to prove the robustness in more general conditions in the network, a complete 

sensitivity analysis on the t variable is needed. The alleviation of these limitations in the future will also further strengthen 

the practicability and robustness of the PSOA-CRL for real VANET applications. 

6. CONCLUSION 

This study proposed the PSOA-CRL, a hybrid multi-objective routing algorithm designed for highly dynamic VANET 

environments. The combination of PSO global optimization with A-CRL adaptive learning enables the method to 

efficiently handle rapid topology changes, high mobility, and dynamic traffic conditions, outperforming previous 

approaches in key performance metrics, including packet delivery, end-to-end delay, link reliability, energy efficiency, and 

routing overhead. On the other hand, the proposed framework achieves real-time performance even on large-scale 

networks, incurs reasonable computational complexity, and maintains a clear modular and localized structure, which may 

ensure its gradual and scalable deployment in practical ITS. Deployment is still a challenge due to limitations in hardware 

and communication, but the flexibility of the framework enables integration with new vehicle communication standards 

and technologies. In the future, we will experimentally validate the approach in practical VNs, integrate the proposed 

approach with 5G/6G communication technologies, improve the optimization procedures, extend the evaluation to more 

details of the QoS, and investigate the systematic sensitivity analysis of key parameters to analyze the influence on 

performance metrics and evaluate the robustness and practical significance of the proposed method. 
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