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A B S T R A C T 

The rapid growth of sophisticated Android malware (AM) threats is significant, as Android devices 

often store private and sensitive personal and financial information. These threats allow stealing of data, 

interference with device functioning, and network compromise. One of the greatest difficulties in 

efficient interception systems is ensuring a high level of detection accuracy for distinguishable AM 

variants. This study focuses on developing a robust Android malware detection model via machine 

learning (ML) and deep learning (DL) techniques. The model combines ML classifiers, which consist 

of logistic regression (LR) and decision trees (DTs), and a DL classifier, an artificial neural network 

(ANN). The model was implemented via an open-source data mining program called Orange. The 

NATICUSdroid dataset was used to train and test the model, which was measured in terms of accuracy, 

precision, recall, F-measure and AUC. The experimental findings revealed that the ANN performed the 

best (accuracy: 98.0%, precision/recall/F-measure: 98.0%, AUC: 0.997) and was better than the LR 

(accuracy: 96.1%, AUC: 0.989) and DT (accuracy: 96.0%, AUC: 0.971) methods. The results highlight 

the high potential of DL-based approaches, especially ANNs, to detect Android malware and reinforce 

their suitability for enhancing mobile security systems. 

1. INTRODUCTION 

The rapid rise of the internet and mobile applications has increased the number of cyberattacks using malicious applications 

such as Trojan horses and rootkits [1] [2] [3]. These can result in system attacks, remote code execution, or theft of 

information [4] [5] [6]. However, malware development began in the 1980s with viruses, which swiftly spread and caused 

hundreds of computer systems to be damaged. Every day, thousands of new pieces of malware are created that are targeted, 

zero-day, stealthy, and persistent. To avoid detection systems, these complicated programs use computer system flaws, 

including obfuscation, encryption, and encoding. [7] [8] . Malware analysis techniques are static and dynamic and detect 

malicious patterns without execution via feature vectors or signature-based detection. To date, researchers have combined 

static and dynamic methods for malware detection. [9] [10] [11]. On the other hand, malware developers have increased 

code complexity, making it more difficult to detect next-generation malware. These types can evade security mechanisms 

and persist indefinitely. Signatures, heuristics, behaviour, model verification, the cloud, mobile devices, the Internet of 

Things (IoT), ML, and DL are some of the detection methodologies [12] [13]. 

Recently, malware, considered an increasingly dangerous vector as technology has advanced, has necessitated sophisticated 

detection techniques to avoid possible damage. Strategies for cyber threat intelligence include data collection, profile 

creation, the use of intelligent algorithms [14] [15], and the development of improved detection and mitigation approaches 

[16] [17]. ML is a reliable and effective threat detection technique [18] [19] [20] [21] . Windows executable files, the world's 

most widely used operating system, are a possible threat vector [22]. Android's existing malware defense mechanism is an 

unsafe communication technique that requires too much technical expertise for average users to differentiate between 

legitimate and dangerous apps. DL, a relatively new branch of ML research, has sparked interest in artificial intelligence and 

Mesopotamian journal of Big Data 

Vol. (2025), 2025, pp. 261–277 

DOI: https://doi.org/10.58496/MJBD/2025/017 , ISSN: 2958-6453 

https://mesopotamian.press/journals/index.php/BigData 

 

 

mailto:o.almomani@ammanu.edu.jo
mailto:mobaydat@kfu.edu.sa
https://mesopotamian.press/
https://orcid.org/0000-0003-3160-6542
https://orcid.org/0009-0009-5898-9855
https://orcid.org/0000-0002-9740-5957
https://orcid.org/0000-0002-0246-4365
https://orcid.org/0009-0002-1649-5573
https://orcid.org/0000-0003-1822-1357
https://orcid.org/0000-0002-1537-4932
https://orcid.org/0000-0002-8871-3392
https://creativecommons.org/licenses/by/4.0/
https://mc04.manuscriptcentral.com/mjbd
https://doi.org/10.58496/MJBD/2025/017
https://mesopotamian.press/journals/index.php/BigData


 

 

 

 

Almomani et al., Mesopotamian Journal of Big Data Vol. (2025), 2025, 261–277 262 

inspired innovative applications in the recognition of speech and images [23]. However, one of the best malware detection 

methods is DL, which addresses a variety of legal, social, and economic concerns in enterprises [24] [25] [26]. Additionally, 

ML algorithms are growing in use in detecting malware because of their promising performance [27]. Additionally, because 

the size of each file varies, IoT malware research requires a substantial dataset and fixed-length features [28] [29] [30]. 

Orange is an open-source software used for data mining. [31] provides a user-friendly environment for creating, evaluating, 

and visualizing malware detection models, integrating data preparation, feature engineering, and model training for efficient 

problem space exploration via both ML and DL techniques to create a prediction model. Additionally, Orange is a visual 

programming tool used for data visualization and data analysis. The Orange tool was selected because of the following 

features, such as visualization, feature selection, and preprocessing, to evaluate the ML predictive modelling and is free and 

open source. This study implements robust AM detection via Orange, the model that combines LR, DT, and ANN. The 

Orange data mining platform has made it possible to design, assess, and visualize malware detection models thoroughly and 

intuitively. On the other hand, Orange's data-mining approach to AM detection is unique since it combines sophisticated 

analytics, ML, and an intuitive interface. By utilizing these advantages, Orange Data mining enables users to create a system 

for detecting malware that is efficient and flexible enough to change with the always-changing mobile threat landscape. To 

further increase detection rates, future studies might examine ways to improve feature extraction methods, use more 

sophisticated ML algorithms, and foster community collaboration [32] [33] [34]. 

Detecting AM is still one of the main challenges of mobile security. Malware creators continue developing new evasion 

techniques, obfuscating malicious code and circumventing traditional detection mechanisms. The diversity of AM, rapid 

emergence of new threats, and high volume of applications further complicate accurate detection, keeping end users 

vulnerable to data breaches and system breaks. To solve these challenges, the main goal of this study is to propose a robust 

detection framework for AM by integrating both the ML and DL approaches. The framework leverages the interpretability 

and efficiency of ML classifiers, such as LRs and DTs, alongside the representational power of DL models, specifically 

ANNs, to enhance the detection performance of MAs. To achieve the goal of this study, the following research objectives 

are threefold: 

 

1. to develop a hybrid Android malware detection model using ML and DL classifiers. 

2. to evaluate the proposed model via the NATICUSdroid dataset. 

3. to compare the performances of the LR, DT, and ANN methods in terms of accuracy, precision, recall, F-measure, and 

ROC AUC. 

The originality of this study is that both the ML and DL approaches are compared in one framework as a comprehensive 

study, whereas most researchers have considered the mechanism of AM detection on the basis of ML or DL models. In 

contrast to the uncommon former literature where single categories of algorithms are being tested or closely guarded 

environments are employed, this paper combines LR, DT, and an ANN in the same experimental circumstances, employing 

the publicly available NATICUSdroid dataset. Furthermore, the use of the Orange open-source framework guarantees 

transparency and reproducibility, so the desired framework will be accessible to both practitioners and researchers. The 

critical analysis of several evaluation metrics, such as accuracy, precision, recall, F-measure, and AUC, used in this study 

provides a more in-depth look at the performance of a classifier. The significance of this research is that it contributes to 

enhancements in mobile security with the high-performance detection method provided. The results of the experiments prove 

that the ANN is better than both the LR and DT classifiers and that it is appropriate as an AM detector because it is robust 

and effective. 

This paper is arranged in the following manner: Section 2 provides an overview of studies on AM detection; Section 3 

provides a glimpse into the proposed model; Section 4 presents the evaluation process of classification under the umbrella 

of the proposed model; Section 5 infers the results; and finally, Section 6 presents the conclusions of this study. 

 

2. RELATED WORKS 

Several AM detection techniques have been presented in the literature, and some of these techniques are discussed in this 

section. 

 

A study by A. R. Nasser, A. M. Hasan, and A. J. Humaidi [35] proposed the DL-AMDet framework to detect AM 

applications in two steps: the CNN-BiLSTM method handles the analysis of static features such as permissions or API calls, 

whereas the dynamic features, that is, system calls, are analysed via deep autoencoders for anomaly detection. This two-
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stage approach thus spots the obfuscations, zero-day attacks, compromises, and dynamic code loading that pure static 

methods cannot address. DL-AMDet, trained and tested with a set of 21,000 good and malicious apps containing 3,100 static 

and 100 dynamic features from each sample, achieved an F score of 99.935%, thus outperforming even the highest existing 

competing techniques. Moreover, the embedded decision module uses dynamic feedback to improve the static model, thus 

strengthening the detection ability. The authors propose that future works explore lightweight versions of this architecture 

so that perhaps it can be implemented on the device without trading detection accuracy. 

In another study by A. Alhogail and R. A. Alharbi [36], in this study, the CICMalDroid 2020 dataset uses chi-square and 

select-from-model techniques, which reduce the feature dimensions from 470 to 120, followed by a two-step classification 

procedure for actual, binary malware detection and multiclass categorization. Their framework, which uses random forest 

classification methods, yielded a malware detection accuracy of 97.82% and a 96.09% classification accuracy, which speaks 

strongly of its generalizability across existing malware types. Taken together, these studies emphasize the integration of 

multilevel analysis and optimization of features with sturdy classification techniques to construct Android malware detection 

systems that are scalable, interpretable, efficient, and suitable for real-world deployments. 

Another study by M. A. Habeeb and Y. L. Khaleel [37] proposed a framework to compare the following ML classifiers: 

ANN, logistic regression, k-nearest neighbors, gradient boosting, adaptive boosting, categorical boosting, and extremely 

randomized trees. According to their results, the ANN classifier performed best in all evaluation parameters, with training 

and testing accuracies of 0.99, an average accuracy of 0.99, a precision of 0.99, a recall of 0.98, and an F-measure of 0.99, 

whereas conventional ML techniques were similar, with F-measures of approximately 0.95--0.96. Owing to the excellent 

learning capability of ANNs, this model can recognize complicated AM patterns more effectively, thus identifying next-

generation and hidden malicious applications. Despite the challenges regarding heterogeneity in datasets, evolving malware 

characteristics, and computational requirements, the study reinforced the adaptability, reliability, and potential of ANN-

based systems in safeguarding Android environments. Further research is encouraged to increase the diversity of datasets, 

consider evolving malware characteristics, increase training efficiency, and enhance model interpretability to support 

practical deployment in any real-world scenario. 

The study by Mat, Sharfah Ratibah Tuan, et al. in [38] described an AM detection method that uses permission characteristics 

and Bayesian classification. The method collects permission features from 10,000 samples from the AndroZoo and Drebin 

datasets and then selects features via information gain and chi-square algorithms to achieve a 91.1% accuracy rate. Another 

study by Lue [39] presented SeGDroid, a new AM detection approach that derives semantic knowledge from sensitive 

function call graphs (FCGs). It constructs a sensitive FCG via a graph pruning method, extracts attributes from graph nodes, 

and induces graph embeddings via a graph CNN algorithm. The approach has an F score of 98% for malware detection and 

96% for malware family classification, indicating malicious activity in AM. 

Moreover, the study by Mathur, Akshay, et al. [40] introduces a new AM detection framework called NATICUSdroid, which 

differentiates harmless and harmful applications using only native permissions or custom permissions. The framework 

employs eight ML algorithms, with the random forest classifier achieving the best accuracy with a false-positive rate of 97%. 

A study by Odat, Esraa, and Qussai M. Yaseen [41] described an ML strategy for detecting AM based on the coexistence of 

static features. The model assumes that malware requests unusual permissions and (application programming interface) APIs. 

The common pattern growth technique was used to build a fresh dataset of features that coexisted. The RF technique and 

coexistence of permission characteristics at the second combination level resulted in good accuracy, with a maximum of 

98%. On the other hand, a study by Mahindru et al. [42]. A system that detects malware in Android apps via dynamic analysis 

and feature selection is suggested. The model is built via four ML methods and rough set analysis. Experiments on more 

than 5,000 Android apps revealed that the model created with DL, farthest first clustering, Y-MLP, and a nonlinear ensemble 

DT forest technique had the greatest detection rate of 98.8%. 

In another study, a lightweight AM detection system with a two-layer structure named MCADS was developed by Ma, 

Runze, et al. [43]. The first layer analyses malware via an upgraded multilayer perceptron (MLP), and the second layer uses 

a novel lightweight convolutional neural network (CNN) for additional analysis. The method attained 98.12% accuracy, 

proving its usefulness as an adjunctive option. 

Haq, Ikram Ul, et al [44]. This approach provides highly effective hybrid DL via multivector malware detection methods. 

To efficiently identify persistent malware, the proposed approach uses a CNN and BiLSTM. The suggested model has been 

rigorously evaluated via publicly available datasets, standard performance measures, and cutting-edge hybrid deep learning 

architectures and benchmark algorithms. Furthermore, the suggested framework detection accuracy reached an average of 

99%. 
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Xiong, S., and H. Zhang [45] tested numerous methods for detecting malware of Android OS, including static, dynamic, and 

ML analysis. However, classic single-model ML techniques have limits in terms of generalizability. Different malware 

behaviors. To address this, a multimodel fusion strategy is proposed in this study. The approach uses numerous ML 

classifiers, such as LR, DT, and KNN, to increase the detection accuracy, which reached 88%. The fusion method is more 

effective than separate models in detecting AM, providing a more balanced and robust approach. This approach demonstrates 

how ensemble techniques can improve prediction accuracy and provide insights for future cybersecurity research. 

Another study by Zhu et al. [46] presented a model called SEDMDroid to ensure individual diversity. It generates subsets 

via random feature subspaces and bootstrapping sample approaches and then performs PCA on each subset. The accuracy is 

tested by training each base learner in the MLP using the entire dataset while keeping all of the major components. The SVM 

is then used as the fusion classifier to extract implicit supplemental information from the ensemble members' output and 

produce the final prediction result. We present experimental findings from two independent datasets gathered via static 

analysis to demonstrate the usefulness of SEDMDroid. The first extracts permissions, sensitive APIs, monitoring system 

events, and other features commonly used in AM, and SEDMDroid achieves an accuracy of 89.07% for these multilevel 

static features. The second dataset, a large dataset, extracts sensitive data flow information as features, with an average 

accuracy of 94.92%. The experimental results prove that the proposed method is good at detecting AM. 

A study by AlSobeh et al. [47]. A framework that uses the KronoDroid dataset to extract time-correlated features and create 

time-aware and time-agnostic ML models is suggested. The last modification date attribute is critical for time-based 

classification. Real-device detection trumps emulator-based detection. Time-correlated features improve the detection 

performance, resulting in a 99.98% F1 score in a time-agnostic situation. Over 12 years, the time-aware classifier outperforms 

typical ML detection models, achieving an average F1 score of 91% and a maximum F1 score of 99%. 

Table I is a summary of all the previous studies. 

TABLE I. SUMMARY OF THE PREVIOUS STUDIES 

Reference Model Performance Metrics Dataset Limitations 

[35] 

DL-AMDet (CNN-

BiLSTM, Deep 
Autoencoders) 

F score: 99.935% 

CICMalDroid 2020 

And  Androzoo 

High Resource Requirements and 

Processing Time Overhead 

[36] RF Classifier Accuracy: 97.82%, 
CICMalDroid 2020 Computational Overhead and Class 

Imbalance Strategy Issues 

[37] 

ANN, Logistic 

Regression, KNN, 
Gradient Boosting, etc. 

Accuracy: 0.99, 
Precision: 0.99, Recall: 

0.98, 

F-Fmeasure: 0.99 

Android Malware Detection Computational Resource 
Requirements and Overfitting 

Concerns 

[38] Bayesian Classification Accuracy: 91.1% 

Drebin and AndroZoo low Detection Accuracy and No 

Comparative Metrics like Recall, 

Precision, and F-measure 

[39] 
SeGDroid (Graph 

CNN) 

F score: 
98% (Malware 

Detection), Accuracy: 

96% (Malware 
Classification) 

CICMal2020 Complex graph extraction; 
computationally heavy and Limited 

Interpretability 

[40] Random Forest 
Best Accuracy: 97%, 

 False Positive Rate: 97% 

NATICUSdroid static permissions, lack of diverse 

datasets 

[41] RF,KNN,LR, J45, SVM Accuracy: 98% 
CIC_MALDROID2020, 

Drebin-215 ,Malgenome-215 
Imbalance Handling and ability to 
detect sophisticated or zero-day 

malware 

[42] 
Machine Learning 

Framework (MLDroid) 
Detection Rate: 98.8% Drebin 

Performance drops for new malware 
variants 

[43] 
Lightweight MLP, 

Lightweight CNN 
Accuracy: 98.12% 

AndroZoo Limited Malware Varieties and Class 

Imbalance 

[44] 
Hybrid DL (CNN, 

BiLSTM) 
Accuracy: 98.86% 

Androzoo and Android 

Malware Dataset 

higher resource usage 

[45] 
Multimodel Fusion 

(LR, DT, KNN) 
Accuracy: 88% 

Drebin, AndroZoo low Detection Accuracy 

[46] 
SEDMDroid (Stacking 

Ensemble) 

Accuracy: 
(Dataset 1): 89.07% 

(Dataset 2) :94.92% 

Dataset 1 
Dataset 2 

low Detection Accuracy and 
Ensemble requires careful tuning 

[47] 
Time-aware ML 

Models 

F1 Score: 
 99.98% (Time-aware), 

Average F1 Score: 91% 

KronoDroid time-aware models require continuous 
data streams and FP may increase due 

to Malware labels change over time 
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3. PROPOSED MODEL 

The proposed model aims to assess the efficiency of the LR, ANN, and DT classifiers in AM detection. An Orange data 

mining tool was used to implement the proposed model. The overall research methodology is shown in Figure 1. 

 
Fig. 1. Overall research methodology 

 
Next, each stage of the proposed model architecture is discussed. 

3.1 Dataset: NATICUSdroid (Android Permissions) 

In this study, the NATICUSdroid dataset [40] was used, and it was balanced. It has 86 unique features, and it contains 29,332 

permission samples issued between 2010 and 2019, 14,700 examples of benign permissions, and 14,632 examples of 

malicious permissions. The binary numbers 0 and 1 were used in the datasets to encode the data. Certain permissions are 

indicated by these numbers, either present or not. Table II compares the most recent android malware dataset. 

 
TABLE II. ANDROID MALWARE DATASET 

Criteria NATICUSdroid CICMalDroid 2020 CIC-AAGM2017 CIC-AndMal2017 
Year of Release 2022 2020 2017 2017 

Source/Provider 
NATICUS Research 

Group 
Canadian Institute for 
Cybersecurity (CIC) 

Canadian Institute for 
Cybersecurity 

Canadian Institute for 
Cybersecurity 

Access Type Public (upon request) Public Public Public 
Benign/Malicious Ratio Balanced unbalanced unbalanced unbalanced 

Feature Types 
Permissions, API calls, 

behavior events 
Static + dynamic Static + network features Static + network features 

 

NATICUSdroid provides an up-to-date and curated balanced dataset to reflect modern threats from Android malwares. The 

NATICUSdroid dataset is used for direct experimental evaluation to achieve reproducibility and relevance. 
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3.2 Data preprocessing 

Preprocessing datasets is a crucial phase in ML, in which data vectors are transformed into modified versions to preserve 

valuable information, eliminate problems, and improve data quality. NATICUSdroid is balanced, with 14,700 records benign 

and 14,632 records of malware. In ML, a balanced dataset is necessary to prevent bias towards the dominant label and enable 

precise generalization across all labels. To reduce overfitting, duplicate instances have been removed from larger datasets 

[48], and dataset permissions and APIs are thoroughly reviewed in the preprocessing stage. The preprocessing step has to 

take some substages to enhance the data quality and achieve a fair comparison of classifiers. 

 

3.2.1 Duplicate removal 

Once the dataset is imported, the feature types and the target label are checked. It is worth removing redundant rows to 

minimize overfitting among the redundant samples. Within Orange, an open-source ML and data visualization system, one 

can find and discard duplicate instances relying on a unique widget that removes rows depending on the properties of one 

set. This widget checks the replications and compares values on the various columns used and only stores the first time that 

value is used. This functionality can be used by researchers to clean datasets prior to analysis to eliminate redundancy and 

strengthen model accuracy. The unique widget allows one to use not only exact matching but also customizable similarity 

thresholds so that the widget can be applied to different data types with categorical and numerical features. Through 

incorporation of this tool into their workflow, data scientists will be able to increase the robustness of their analyses with a 

substantially reduced computational overhead caused by redundant data. Figure 2 displays the unique widget employed to 

eliminate the duplicated instances in the NATICUSdroid dataset. 

 

 
Fig. 2. Unique widget 

 

3.2.2 Missing data handling 

Missing data are one of the problems that negatively impacts the learning ability of a machine. Orange data mining offers 

powerful facilities to manage missing values by using imputation methods such that all the data are complete and an 

analytical metric can be accurate. The software implements several imputation strategies: mean, median, and mode 

imputation on a numerical and categorical value scale, in addition to more complex approaches, including k-nearest 

neighbors (KNN) and model-based imputation. Using the easy-to-use visual programming interface of Orange, users can 

easily plug-in imputation as part of their data preprocessing routine. The impute widget enables investigators to choose the 

most suitable method depending on the data pattern of missingness and distribution to reach the lowest level of bias and 

maintain statistical integrity. Moreover, orange can be useful when analysing comparisons because it allows for the 

determination of the effects of various imputation techniques on the results of performing modelling in a session to ensure 

the best data treatment. The “Average/Most-Frequent” method is the most common approach; therefore, it was considered 

in this study. This functionality contributes to the effectiveness of Orange as a tool that allows researchers to confront the 
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missing data issue with some efficiency and, at the same time, ensures the integrity of the dataset to be used when addressing 

the issue of missing data by means of machine learning in the future. Figure 3 shows the imputed widget utilized to remove 

the missing values in the NATICUSdroid dataset. 

 

 

Fig. 3. Impute widget 

 

3.2.3 Normalization 

Normalization is a necessary method of preprocessing data in data mining practices that determines the features that make a 

similar contribution to analytical models by scaling those features to others of a standardized range. The min–max 

normalization method transforms numerical features to a user-specified range via a linear transformation, usually [0, 1]. The 

strategy retains the original distribution of the data but neutralizes the effect of different scales; hence, it is beneficial to 

algorithms whose performance depends on the magnitude of features. In Orange, one can use min–max normalization via 

the preprocess widget, which has a more intuitive interface, to set the scaling parameters. This approach standardizes features 

into a range of [0, 1], which increases the accuracy of the model, results in less bias toward highly scaled variables and 

accelerates the convergence rate of gradient-based optimization methods. Nevertheless, Min–Max can be easily affected by 

outliers, as the extreme values are capable of overly compressing the transformed data. In this way, the outliers should be 

treated before normalization to achieve the best possible results. Figure 4 shows the preprocessing widget utilized to scale 

the values in the NATICUSdroid dataset. 

 

Fig. 4. Preprocessing widget 
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After the preprocessing steps of the NATICUSdroid dataset are complete. The preprocessed data are then partitioned into 

70% training and 30% testing sets, and three distinct classifiers are then employed—LR, ANN, and DT—to detect the AM. 

3.3 Orange3 Data mining tool 

Orange 3 [31] is a data mining application that employs Python scripting and visual programming to analyse data and 

evaluate ML and DL model validity. The primary goal of Orange 3 is to enable users to create simple Python scripts that 

extend C++ implementations of computationally intensive activities. Orange 3 is intended for both experienced users and 

coders. Figure 5 shows the full orange implementation of the model to detect the AM via LR, ANN, and DT. 

 

 
Fig. 5. Model Implementation using Orange 

3.4 Classifier 

ML and DL are types of AI that focus on developing computer algorithms that evaluate and learn data via intrinsic patterns, 

gradually improving their accuracy rate [49] [50]. ML can be classified into four categories: supervised, unsupervised, 

evolutionary, and reinforcement learning [51] [52]. However, AI, ML, and DL are frequently used interchangeably to explain 

the development of application ideas, referring to machines that are built to learn and identify the best options [53] [54]. 

Figure 6 shows the relationships among AI, ML, and DL. On the other hand, data classification requires developing and 

testing a classifier that can categorize unknown classes. The proposed model is validated via split valuation techniques (30% 

testing and 70% training). Classification is performed with the LR, DT, and ANN classifiers. The LR, DT, and ANN 

classifiers were chosen to evaluate the proposed model because these classifiers have been used in previous studies to detect 

the AM. 
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Fig. 6. Relationships among AI, ML, and DL [51]. 

 Logistic Regression (LR) 

LR is a supervised learning method used to predict dependent values in datasets and is categorized via regression models 

[55]. LR can be considered a classification rather than a forecasting technique for constant variables. It is also used to assess 

discrete values such as 0/1 from a collection of independent variables. 

Using the sigmoid function, LR is applied to discontinuous possibilities, which converts quantitative outputs into likelihood 

assertions. Libraries are imported, the datasets are input and visualized, null/missing values are managed, outliers are 

assessed, dependent and independent variables are established, and ensemble and boosting methods are employed to increase 

accuracy. LR can be represented mathematically by equation (1): 

 

                                   𝑦 =
𝑒(𝑏0+𝑏1𝑥)

1
+ 𝑒(𝑏0 + 𝑏1𝑥)                                                                                   (1) 

 

In the equation, 'x' represents the input value, 'y' represents the expected outcome, 'b0' is the bias or intercept term, and 'b1' 

is the input coefficient. 

 Decision Tree (DT) 

DT is used for regression [56], data analysis, and classification. It is made up of decision nodes, edges, and leaf nodes, with 

each attribute serving as a node. The tree is built from a single node to meet parameters and decisions, finally reaching a 

terminal node that forecasts the result [57]. Figure 7 shows the DT algorithm structure. 

 

 
Fig. 7. DT structure 

 

Artificial 

Intelligence 

Machine Learning 

Deep Learning 

Ability of a machine to imitate 

intelligent human behavior. 

 

Application of AI that allows a 

system to automatically learn and 

improve from experience 

Application of machine learning 

that uses complex algorithms and 

deep neural nets to train a model. 
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 Artificial Neural Network (ANN) 

ANNs are made up of neurons linked by connections that can be changed by learning processes. They calculate activity by 

combining data from connections, including bias nodes in each layer [58, 59]. However, an ANN is made up of several 

layers, each containing several neurons. The input is the first layer, while the output is the final layer. Hidden layers are those 

that exist between layers. Figure 8 shows the structure of an ANN. 

 

 
Fig. 8. Structure of ANN [60] 

Table III presents the ANN setting parameters that were used in the experiment. The pseudocode of the ANN is shown in 

Algorithm 1. 
TABLE III. ANN SETTING PARAMETERS 

Neural in hidden layers 100 

Activation Rule ReLu 

Solver Adam 

Regularization Alpha 0.05 

Error Threshold 0.0001 

Number of iterations 200 

 

 
 

Input Layer Hidden Layer Output Layer 
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4. PERFORMANCE EVALUATION 

The confusion matrix (CM) is used to determine the efficacy of the ML and DL detection algorithms [61] [62]. It provides 

a summary of forecasts per class, with True (1) and False (0) representing actual values and expected values, respectively. 

To assess the possibilities of the classification model, the CM contains true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN) entries. The CM's components are the FP, TN, TP, and FN, which assist in evaluating the 

model's accuracy while dealing with several classes in a dataset. Table IV. General binary CM. 
 

TABLE IV. CONFUSION MATRIX 

 

Actual 

Predicted 

(TP)  (FN) 

(FP) (TN) 

4.1 Performance metrics 

To evaluate the efficiency of the proposed model in detecting AM, five metrics are used in the evaluation of classification 

models, such as accuracy, precision, recall (sensitivity), F1 score, and area under the curve (AUC). The measures of each 

are defined below. 

1) Accuracy 
The accuracy defines how many of the instances are true compared with the number of all the instances. The accuracy 

was measured via Formula 2. 

                                                       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                    (2) 

 

where TP = true positives, TN = true negatives, FP = false positives, and FN = false negatives. 

2) Precision 
Precision measures how many of those that were predicted to be malware are malware. The greater the precision is, the 

fewer false alarms there are. Precision is calculated via formula 3. 

                                                                   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                        (3) 

 

3) Recall (sensitivity) 
The quantity of correctly classified instances of actual malware depending on the totality of the malware present is termed 

the recall or sensitivity. Good recall avoids several malware detections. Recall is measured by formula (4). 

                                                                  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                (4) 

4) F1 score 
The harmonic mean of the precision and recall gives an equal value of the F1 score, which gives a balanced metric when 

both precision and recall matter. The F1 score is computed via formula 5. 

                                                      F1 − Score =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ Recall

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ Recall
                                                                                   (5) 

 

5. RESULTS AND DISCUSSION 

In this section, an informative assessment of the proposed model and a critical contrast with other classifiers and earlier 

literature are given. The goal is to qualitatively review the efficiency of the ANN-empowered method to counter malware in 

Android and to define its overall advantages. Different metric-based performance evaluations are performed with the 

application of the AUC, accuracy, precision, recall, and F1 score, which represents a balanced and reliable assessment. Every 

metric was selected to outline the predictive power, robustness, and suitability for AM detection. 

 

Figure 9 depicts the confusion matrices obtained, which can provide the first insight into the performance of each classifier 

in the detection of AM. The ANN classifier results in the fewest misclassifications, with only a few benign apps falsely 

detected as malware applications and few malwares detected as benign. Conversely, the numbers of false positives and false 

negatives generated by the LR and DT methods are greater, yet the values of the LR method are superior to those of the DT 

method. These findings indicate the strong ability of the ANN to discriminate between benign and malicious applications. 
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(a) (b) 

 
(c) 

 

Fig. 9. Obtained Confusion matrix (a) LR, (b) ANN, (c) DT. 

To further substantiate the performance of the classifiers, receiver operating characteristic (ROC) curves were plotted with 

each model, as shown in Figure 10. The ANN had an AUC = 0.997, which is near the zero value of complete separability of 

the ANN model. The superiority of the ANN over the LR model was also revealed, with an AUC of 0.989, indicating 

moderate performance and less effectiveness than the ANN. The DT performed reasonably well, with an AUC of 0.971, 

except that overlapping feature spaces were slightly cumbersome. The results verify that the ANN is the best at identifying 

AMs. 
 

  
(a)                                                     (b) 

Fig. 10. ROC curves of (a) Class 0 (no malware was detected) and (b) Class 1 (malware was detected) 

This finding is also further supported by the accuracy results. The ANN was very good, with an accuracy of 98.0%, whereas 

the accuracies of the LR and DT were 96.1% and 96.0%, respectively. The margin of almost 2% indicates that the ANN is 

better since it correctly classifies malware as well as benign. This increase is especially significant in security systems, where 

a slight increase in accuracy can have a large effect on the mitigation of risks. 
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In terms of precision, the ANN achieves a precision of 0.980 first, followed by the LR (0.961) and DT (0.960) methods. 

Specifically, most of the interrupted applications detected as malware were indeed malicious and thereby reduced false 

positive surveillance. This is required for use in real life; since there can be many false positives, it may saturate the users or 

system administrators with alerts that are not needed. 

 

Recall or sensitivity is also important, as it indicates the accuracy of the model in identifying malware without falsely 

identifying threats. The ANN achieved a recall of 0.980 in that almost all malicious samples were recognized correctly. LR 

and DT (0.961) were good and were likely to miss some malware samples. With cybersecurity, superior recall is especially 

worthwhile because unnoticed malware can be catastrophic. 

 

Finally, the F1 score, which guarantees precision and recall, is superior to the ANN. The ANN returned an F1 score of 0.980, 

and the LRs and DTs were 0.961 and 0.960, respectively. The fact that all the values consistently decreased with ANN further 

demonstrates that the latter technique not only reduces false positives but also guarantees high coverage with respect to AM 

detection. A performance matrix comparison with classifiers is shown in Figure 11. 

  

 
Fig. 11. Performance matrix comparison versus classifiers 

Table V presents a comparative analysis of the study results with those of previous studies. Accuracies with previous works 

were between 91.1% [34] and 98.8% [38]. Conversely, the accuracy of the proposed ANN-based model was 98.0 and almost 

perfect, with an AUC value of 0.997, which is considerably higher and stronger than those of the majority of the previous 

methodologies. 

TABLE V. COMPARISON OF THE PROPOSED MODEL WITH PREVIOUS MODELS 

Study\Year Methods\Model Accuracy AUC Notes 

[38]/2022 chi-square algorithms 91.1 N/A Lower detection 

[42]/2021 Deep learning algorithms, farthest first clustering, Y-MLP, 

and nonlinear ensemble decision tree forest approach 

98.8 N/A High accuracy, but less robust 

under imbalanced data 

[43]/2024 Multilayer Perceptron and Convolutional Neural Network 98.12 N/A Strong performance, but limited 
scalability 

Proposed 

model 

DT, LR, and ANN 98.0 97.7 Balanced performance across all 

metrics, robust and scalable 

 

6. CONCLUSION 

The present research demonstrates the importance of performing a comparative analysis between the ML and DL methods 

for AM detection on a systematic basis. In addition to raw performance, the results yield insightful data: ANN is a better 

choice for modelling AM patterns, LR is more accurate and computationally efficient for resource-constrained devices, and 

DT is more readable and can aid the goal of explainable security. This finding indicates that the selection of a classifier must 
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involve a tradeoff between precision, interpretability, and resource limits, according to implementation requirements. The 

major advantage of this work is that a coherent assessment of ML and DL identifiers can provide practical recommendations 

for implementing flexible and effective mobile safety systems. The implication is further realized in the form of enhancing 

the privacy of users and their resistance to malware threats that continue evolving. The proposed model showed high 

performance, but because it was tested on only one dataset, its ability to generalize the results to broader real-life situations 

is limited. In addition, the use of static features and the complexity of the general ANN model pose issues of flexibility, 

explainability, and execution on devices with limited resources. To resolve these problems, future work will include several 

datasets, combinations of both dynamic and static features, and lightweight, explainable deep learning models that are 

applicable in mobile settings. 
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