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A B S T R A C T  
Requirement prioritization (RP) is one of the main activities in software analysis; an incorrect RP process 
can lead to many software failures. In any software project, the requirements are interdependent. Most 
current RP techniques almost overlook the requirements dependency (RD) handling while prioritizing. 
Neglecting dependencies among requirements during the RP task can lead to deadlock and incorrect 
prioritization results, resulting in high rework and project delays. This motivates us to introduce a novel, 
scalable, dependency-aware RP algorithm, namely, then Dependency-Aware Enhanced Analytical 
Hierarchy Process (DA-EAHP), which integrates an RD handling mechanism using fine-tuned large 
language models (LLMs) into our previously developed RP technique, namely, the Enhanced Analytical 
Hierarchy Process (E-AHP), to increase the realism and accuracy of the software RP process. The 
proposed algorithm is assessed against two zero-shot-based LLM models and a fuzzy graph-based model. 
All were evaluated on various-sized subsets from the PURE dataset, ranging from 25 500 requirements, 
to compare their dependency analysis accuracy and computational performance. The results show that 
our proposed algorithm achieves a 7–18% accuracy improvement over the baselines, with an 
approximate reduction of 52–82% and 71–79% in time and memory, respectively. Moreover, a 
comparison with another variant of the proposed algorithm without the RD handling process validated 
its positive impact on the RP process. These results show that DA-EAHP provides a more accurate and 
efficient RP technique, making it suitable for large-scale software projects with complicated 
dependencies. Research limitations include the dependence on scalability beyond 500 requirements and 
expert-annotated ground truth, which are open for future work.  

1. INTRODUCTION 

Requirement prioritization (RP) plays a critical role in the success of any software project, especially agile projects [1-3].   
Specifying essential requirements within a specified time, budget, and user-satisfaction constraints requires a highly 
structured and scalable RP process [2]. An inaccurate RP process can lead to high rework, high costs, and client 
dissatisfaction, resulting in project failure [4,5]. One of the main challenges in the RP process is handling requirement 
dependencies (RDs) during prioritization [5-11]. As in any software project, the requirements are interrelated, and 
implementing one often requires implementing another first. Ignoring these RDs can lead to bottleneck development, 
inaccurate prioritization results, deadlocks, and inefficiency in resource allocation. Moreover, some dependencies cause 
cascading effects, where the failure or delay of one can affect multiple other downstream requirements. Therefore, a high-
quality RP process must consider RD while prioritizing. 

Existing approaches and techniques for RP and RD detection have achieved partial success. For example, large language 
models (LLMs) excel in capturing semantic context and meaning, providing high accuracy in complex scenarios.   Fuzzy-
based models offer flexibility for uncertainty handling and interpretability. Natural language processing (NLP) and machine 
learning (ML) offer efficiency and scalability, especially with moderate-sized and structured datasets. These successes 
highlight the strengths of various techniques in solving RP challenges. However, different limitations exist. For example, 
LLMs require high computational resources and domain-specific fine-tuning. Fuzzy methods depend on predefined 
membership functions, limiting their adaptability to various domains. Classical NLP and ML approaches cannot capture 
nuanced contextual RDs. These limitations explain why current approaches have not become optimal solutions that balance 
scalability, interpretability, and accuracy, highlighting the need for more improvements. 
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Our survey research [12] shows that limitations exist in the current RD analysis approaches and RP techniques, including 
the following: 

 Most RP techniques face serious limitations regarding RD handling, as almost none handle RD while prioritizing. 

 Most current RD analysis approaches have not been tested on real or large datasets, raising concerns about their 
robustness, scalability, and applicability in real software environments. 

 Although artificial intelligence-based RD analysis approaches, specifically LLMs, prove performance superiority in 
implicit RD detection, they lack transparency, as they function as black boxes. They also require high computational 
resources, limiting their standalone applicability. 

 In contrast, traditional rule-based approaches, especially graph-based techniques, offer better explainability but often 
face difficulty in detecting hidden and semantic RDs. 

These limitations emphasize the need for a new dependency-aware, scalable, transparent RP approach to handle large 
requirements, which motivates us to enhance our previously proposed RP technique, namely, the Enhanced Analytical 
hierarchy process (E-AHP) [13], by introducing a dependency-aware E-AHP (DA-EAHP) that extends it with a scalable, 
accurate, transparent dependency-aware mechanism using strong structure rules, LLMs, and NLP to be a comprehensive RP 
technique that enhances the decision-making process in requirements engineering. 

The main contributions of this research paper can be summarized as follows: 

 A dependency-aware RP technique, namely, DA-EAHP, extends our previously proposed E-AHP algorithm to 
consider RD while prioritizing by integrating semantic similarity analysis using LLMs to extract implicit and 
complex RD, enhancing RP’s contextual awareness, and adjusting the RP process result by considering the 
dependency relationships. 

 An automatic domain-specific requirements scoring mechanism that replaces user input in E-AHP with predefined 
domain-specific keywords to determine a more accurate score for each requirement, and enhances scalability. 

 Replacing heuristic grouping in E-AHP with a rule-based grouping mechanism that groups the requirements 
according to structural cues enables an effective and scalable RP process. 

 A comprehensive evaluation of our proposed algorithm's performance, scalability, and accuracy in handling large 
requirements and considering RD against zero-shot LLM and recent fuzzy graph-based models using a PURE 
dataset, which was selected owing to its popularity in the requirements engineering   (RE) field and its domain 
relevance. 

 The full proposed algorithm and a variant without the RD analysis phase are compared to highlight the added value 
and impact of integrating the RD handling task into the RP process. 

Therefore, the paper's objective is to propose a comprehensive dependency-aware RP algorithm that enhances the scalability 
and accuracy of RP when handling large requirements with a complex dataset. The originality of this paper lies in 
incorporating a dependency analysis mechanism into an enhanced version of the AHP framework, enabling it to handle RD 
effectively. Unlike others, which focus only on the RD or RP task, our proposed algorithm offers a novel, unique solution 
by integrating both with high accuracy, making our algorithm an effective and comprehensive RP approach. By considering 
the RD in the prioritization framework, the algorithm can prevent costly rework and minimize sequencing errors, leading to 
more consistent and correct decisions and supporting the delivery of high-quality software products. 

The rest of the paper is structured as follows: Section 2 presents an overview of related works on RD management approaches 
and techniques. Section 3 presents the research background and main concepts. Section 4 introduces our proposed algorithm, 
DA-EAHP. Section 5 presents the experimental setup, Section 6 presents the results and discussion, Section 7 discusses the 
study's limitations and threats to validity, Section 8 concludes the paper, Section 9 outlines future work, and Section 10 
presents the data and code availability. 

 

2. RELATED WORKS  

This section reviews existing techniques proposed to detect software RDs, highlighting their advantages and limitations.   
Researchers [14] use an NLP-based technique to determine and extract dependencies among requirements. It first applies 
NLP to the collected software requirements in the SRS. After that, it analyses the main terms as a semantic structure. This 
approach focuses mainly on the evolution of the requirements dependencies. This tool dynamically reassesses dependencies, 
ensuring the accuracy of the discovered dependency. Instead, it incrementally evaluates the updates, which improves 
adaptability. Although this tool succeeded in supporting adaptability and achieving an acceptable level of accuracy, it does 
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not produce explainable results, cannot detect hidden dependencies, is not scalable with large requirements, and has 
generalizability issues. 

Researchers [15] proposed an approach based on deep learning and NLP to extract implicit dependencies. It extracts cause-
and-effect dependencies and then applies NLP-based methods to analyse the pattern that indicates these causal dependencies. 
It introduces an NLP-based architecture that uses neural networks and tree recursion. It is trained to discover the causality 
dependencies in human language. They also introduced a dataset that is suitable for deep learning. The results show the 
approach’s ability to uncover causal relationships with acceptable accuracy and interpretable results.   However, it cannot 
handle implicit dependencies. Researchers [16] proposed an RD detection framework that combines active learning with 
ontology-based and supervised ML. It applies active learning to refine models, reducing the manual effort for annotation. 
This approach is also ontology-based to benefit from specific domain knowledge and improve semantic requirements 
dependency analysis, affecting overall contextual relevance. Although it can detect implicit dependency and produce 
interpretable and accurate results, it has scalability concerns, as it has not been tested on a large dataset. 

Researchers [17] introduced an optimization approach that combines human value dependencies with the RP process. This 
method represents RD via fuzzy logic, making modelling uncertainty flexible. This ensures high-value selection of the 
requirements while handling their dependencies via optimization methods. This paper highlights that the dependency 
representation can improve the decision-making process and enhance software release, and that fuzzy logic can achieve a 
realistic approach for complex requirement dependencies. This approach achieves high accuracy metrics in detecting implicit 
dependencies with a high level of explainability; however, it cannot handle large requirements and has generalizability. They 
also proposed an approach that combines fuzzy graphs with integer programming to control software dependencies [18]. 
This approach models each requirement as a node and each dependency among requirements as edges in the fuzzy graph, 
allowing flexible modelling of dependency uncertainties. It also balances technical dependency constraints, technical 
feasibility, and business value via integer programming, which optimizes release planning. The results highlight that handling 
dependency leads to more efficient software release planning. This approach can detect implicit dependencies and produce 
interpretable and accurate results. However, it has scalability concerns, as it has not been tested on a large dataset. This 
approach has been used as one of the baselines in this study because of its strong structure in dependency handling techniques. 

Researchers [19] introduced an NLP-based technique called FSARC, which is short for the “Analysis-based Requirements 
Conflict Detector”. It first analyses the finer semantic composition of the requirements to discover the conflict between them. 
The algorithm analyzes the linguistic features of the requirements and makes a notation for their semantic model 
construction. Although this technique can detect implicit dependencies with high accuracy, it has scalability, generalizability, 
and transparency issues. Researchers [20] introduced an LLM-based approach that discovers dependencies among 
requirements in complex systems. It uses LLMs to capture dependencies through contextual understanding. It integrates 
domain-specific information with the BERT model to improve the accuracy of dependency diversity. This approach performs 
requirement dependency classification and transforms the results into a list of all the dependencies among requirements. This 
approach can enhance consistency, traceability, and efficiency in controlling and managing dependencies among 
requirements in large software projects. However, it cannot handle implicit dependencies among requirements, has 
scalability concerns, has not been tested on a large dataset, and does not produce interpretable results. 

Researchers [21] proposed a technique that uses supervised learning and semantic similarity to identify dependencies of type 
conflicts among requirements, namely, S3CDA. It has been applied in different domains where data are labelled, specifically 
in the software engineering field, which requires conflict identification. While applying contextual embedding, the method 
detects the semantic dependencies among requirements. The results of this approach depend highly on the quality of the 
labelled training dataset, which limits its adaptability to new scenarios. It also cannot handle implicit dependencies and 
cannot produce interpretable results. Researchers [22] have analysed the causal dependencies on software requirement 
prioritization. It utilizes NLP, including part-of-speech (POS), dependency parsing, and pattern-based matching, to discover 
causal relationships in the SRS. It also applies semantic similarity among words to extract causal dependency, reducing false 
positives. The extracted dependencies were explored further to assess their impact on requirements change management. 
The findings prove the importance of causality relationship detection in enhancing decision-making and avoiding risks. The 
approach in the study can handle implicit dependencies among requirements with acceptable accuracy. However, it does not 
produce explainable results and has scalability concerns, as it has not been tested on a large dataset. 

Researchers [23] proposed a framework based on AI that enhances RD analysis from SRSs. It integrates ML with AL to 
minimize the complexity of dependency extraction on large labelled datasets. It applies ML to identify existing dependencies 
among requirements and adjusts them iteratively via active learning. It includes the domain experts’ feedback to improve 
the model accuracy. The results show that it has achieved high accuracy metrics compared with traditional techniques, 
confirming the effectiveness of combining ML with AL in feedback loops. This approach can detect implicit dependency, 
but does not produce interpretable results and has scalability issues. Researchers [24] introduced an ML-based approach for 
dependency capture, focusing on analyzing their effects in real, practical scenarios. The approach integrates supervised and 
unsupervised learning models to discover complex dependencies from SRSs. It also uses ensemble learning, embedding, and 
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feature extraction to enhance the dependency extraction. They make a return on investment analysis to evaluate the trade-
offs between computational cost and development complexity. The results clarify the benefits of applying ML models in RE 
while addressing domain-specific needs and scalability. This approach can detect implicit dependencies and has been tested 
on large datasets, but it has transparency issues. 

Researchers [25] introduced a stacking ensemble learning model that extracts dependencies among requirements, namely, 
P-stacking. It applies semantic analysis via IDF features, POS, and Word2vec to enhance dependency prediction. It integrates 
various classification algorithms, such as neural networks, decision trees, and support vector machines. A meta-learner 
enhances the output of these models, producing a more accurate and dependency discovery mechanism. The model 
demonstrates high accuracy metrics compared with the traditional model, but it has not been tested on a large dataset and 
does not produce interpretable results.   Researchers [26] introduced an LLM-based approach combined with a formal logic 
approach that extracts the dependencies of type contradictions between requirements. It focuses on identifying the 
conditional statements in human words. LLM helps translate complex, ambiguous, and context-dependent software 
requirements, enabling a deep understanding. Formal logic provides a structured framework for identifying contractions by 
interpreting the requirements set into logical rules. This hybrid approach emphasizes the benefits of applying LLM for human 
language translation and logic rules for structured validation. This work clarifies the method's ability to improve the 
consistency between requirements, specifically in large and complex projects. This approach can detect implicit 
dependencies with high accuracy. However, it has not been tested on large datasets and cannot produce interpretable results. 

Researchers [27] introduced a framework, DepsRAG, that utilizes LLM models for managing dependency among 
requirements. This work uses retrieval-augmented generation (RAG) to enhance queries that retrieve relevant information 
from the resulting knowledge graph. It also applies a pretrained LLM model to analyse the resulting dependency graph. This 
proves improved accuracy in dependency extraction and the importance of including LLM models in RP tasks, specifically 
in discovering dependencies among requirements. It fills the gap between automated dependency extraction and decision-
making in the RE field.   This approach can detect implicit dependencies with acceptable accuracy; however, it has not been 
tested on a large dataset, and its results lack transparency. Researchers [28] introduced a static analysis-based approach, 
RefExpo, to extract dependency graphs from the requirements list. It focuses on the structural dependency type between 
requirements. It can extract many structures of large requirement sets via control flow analysis. This study demonstrates that 
automating the dependency analysis process enhances software maintainability and impact analysis by visualizing 
requirements dependencies. The resulting dependency graph provides a structured method for discovering strong 
dependencies, which achieves better decision-making. It outperforms manual approaches in terms of accuracy and efficiency. 
This approach produces interpretable results but cannot detect implicit dependencies and has scalability concerns.   
Researchers [29] introduced a technique that combines ML with NLP to extract conceptual diagrams from SRSs. This 
approach applies structured semantic analysis and representation to enhance the traceability and visualization of 
requirements. It helps to understand the dependencies among requirements by transforming the textual dependencies in the 
SRS into a conceptual model. It focuses mainly on discovering structural dependencies among requirements. Although the 
approach supports visualization and produces explainable results, it suffers from a scalability challenge and cannot detect 
implicit requirements efficiently. 

Therefore, while existing RD analysis techniques provide valuable insights, most face transparency or scalability concerns, 
some lack evaluation on large real datasets, and others suffer from handling implicit RDs. Our proposed algorithm (DA-
EAHP) overcomes these limitations by providing a more scalable, dependency-aware, transparent, robust, and 
comprehensive solution for RPs and RDs. Among these reviewed techniques, the fuzzy-logic-based approach [18] was 
selected as a strong comparative baseline in this paper because it focuses on "requires"-type RD, which is targeted in our 
research, and because of its strong structure in RD handling techniques. Table I compares each technique’s strengths, 
weaknesses, and key performance results. 

TABLE I. A COMPARISON OF THE ADVANTAGES, LIMITATIONS, AND KEY PERFORMANCE INDICATORS FOR EACH TECHNIQUE. 

Ref. Year Advantages Limitations key-performance 

[14] 2020  It handles the changing and evolving 

requirements. 

 It combines many phases, such as 

preprocessing and analysis, to 

improve the quality of the results.  

 Results rely highly on the clarity of input. 

 Needs high computational resources. 

 Needs customization for each project. 

 Applicable only to small datasets. 

 Results are not interpretable. 

 Evaluated on a real dataset and 

achieved an accuracy of 82% 

and a recall of 80%. 

[15] 2020  Offers a strong semantic 

mechanism for discovering cause 

and effect relationships and can 

handle complex dependencies. 

 Support handling scenarios that 

need detailed RD analysis. 

 Produce explainable results.  

 Requires complete and structured input 

to produce high-quality results. 

 Needs customization for each different 

domain.  

 Need high computational resources. 

. 

 Evaluated on a large and real 

dataset and achieved an F1 

score of 81.5 %. 
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Ref. Year Advantages Limitations key-performance 

[16] 2020  Offer iterative learning, which 

optimizes time and resources. 

 Can handle semantic and logical 

dependencies. 

 Integrate AL with ontology-based 

dependency analysis. 

 Needs well-structured ontologies for 

correct output. 

 Need customization for each domain. 

 Need high computational resources and 

involvement of domain experts.  

 Can handle only small datasets. 

 Results not explainable. 

 Evaluated on real dataset and 

achieved F1 score of 86.3 %. 

[17] 2020  Offer optimization methods and 

provide a balance between the 

preferences of stakeholders and 

dependencies. 

 Handles RD uncertainties. 

 Handle human values 

dependencies. 

 Produce explainable results. 

 Needs high computational resources due 

to the tuning of fuzzy parameters. 

 Can handle small datasets only.  

 Needs customization for each project.  

 

 This approach cut value loss 

to about 5 %, while other 

methods lost 20-30%. 

[18] 2021  Offer a high level of transparency. 

 Handles uncertainty in RD  

 handles semantic dependencies. 

 Offer balancing of constraints and 

RD that support release planning. 

 Needs high computational resources due 

to integer programming complexity.  

 Needs customization for each project.  

 Needs accurate modeling for 

determining the membership function.  

 This method increased the 

total captured value and 

reduced the loss, specifically 

for large datasets. 

[19] 2021  Offer fine-grained dependency 

analysis to capture requirements 

conflicts. 

 Can identify the inconsistencies 

between requirements, reducing 

human effort. 

 Can handle hidden dependencies. 

 Need high input quality to produce 

accurate results. 

 Need high computational resources. 

 Needs customization for each project.  

 Results are not explainable  

 Can handle only small datasets.  

 

 Evaluated on two real datasets 

and achieved an F1 score of 

84.3 and a Precision of 85%. 

[20] 2022  Can handle implicit and complex 

dependencies. 

 Can handle functional and 

structural dependencies. 

 Can be applied to different contexts 

and projects.  

 Relied on LLMs, which introduce biases 

and subjectivity according to the training 

datasets.  

 Requires high computational processing. 

 Need high computational resources. 

 Can be applied only to small datasets. 

 Results lack explainability. 

 Assessed on a real dataset and 

achieved an F1 score of 98 %. 

[21] 2022  Offers a supervised learning 

mechanism that improves the 

accuracy. 

 Handles synonyms and contextual 

variation and inconsistencies using 

semantic similarities.  

 Can be applied to different projects 

and contexts. 

 Need highly complete and structured 

input to produce high-quality results  

 Needs annotated data to work, which is 

scarce in the software engineering field. 

 Can handle only explicit RD. 

 Can handle only small datasets. 

 

 Assessed on a real data set and 

achieved a Recall of 85%, a 

Precision of 90 %, and an 

accuracy of 88 %. 

[22] 2023  Offer traceability by determining 

the causal links. 

 Can handle hidden dependencies. 

 Can be applied to different 

contexts. 

 Need domain-specific fine-tuning. 

 Results lack explainability.  

 

 Assessed on 2000 

requirements, and produced an 

F1-score of 82 %. 

[23] 2023  Can handle structural and semantic 

dependencies. 

 Can handle new dependencies. 

 Needs well-structured AL strategies. 

 Need customization for each project. 

 Can be applied only to small datasets  

 Results lack explainability. 

 Assessed on a real dataset and 

produced an accuracy of 90%. 

[24] 2023  Offer cutting-edge mechanisms to 

enhance the dependency accuracy. 

 Offer complete analysis of costs 

and benefits using ML methods 

 Can handle implicit, semantic, 

structural, and evolving 

dependencies. 

 Requires experts and high computational 

resources.  

 Need high computational resources. 

 Need involvement of domain experts. 

 Can handle only limited scenarios. 

 Results lack explainability. 

 Assessed on various real 

datasets and improved the F1 

score by 27%. 

[25] 2024  Supports integration of different 

ML models. 

 Need high computational resources   

 Need correct parameter tuning and 

coordination between learners. 

 Assessed on three real-world 

datasets and produced an F1 

score of 90.2 %. 
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Ref. Year Advantages Limitations key-performance 

 Offer integration of various ML 

models  

 Can handle semantic and syntactic 

dependencies. 

 Can be applied to different contexts 

and projects. 

 Can be applied only to small datasets. 

 Results lack explainability. 

 

[26] 2024  Offer complex requirements 

dependency management  

 Handle hidden dependencies and 

nuanced contradictions. 

 Can be applied to large 

requirements  

 Needs high computational resources 

because of the mapping of requirements 

into formal logic 

 LLMs introduce inaccuracies and biases. 

 Assessed on a real dataset and 

produced 92.1% accuracy.  

[27] 2024  Can handle hidden and complex 

dependencies. 

 Produces explainable results. 

 

 Need a large training dataset for 

producing accurate results  

 Need large computational complexity 

due to LLM model inference. 

 Need specific customization for each 

different project. 

 Can be applied only to small datasets. 

 Assessed on a real data set and 

produced a Precision of 93 %.  

And an F1 score of 91.1%  

[28] 2024  Offer RD graphs and static analysis 

that enhance visualization analysis. 

 Produce explainable results. 

 

 Needs regular updates to adapt to the 

changes of the programming language 

used, and is limited only to simple code. 

 It can be applied to only small datasets.  

 Cannot handle implicit dependencies. 

 Assessed on a real dataset and 

achieved a precision of 92 % 

and a Recall of 88%  

[29] 2025  Enhance the requirements 

visualization and support 

traceability. 

 Reduce the requirements 

ambiguity. 

 Produce explainable results. 

 Applicable to different contexts. 

 Can only handle explicit dependencies 

and static dependencies. 

 Can only be applied to small datasets. 

 

 Tested on a real dataset and 

achieved an F1 score of 90%. 

 

3. BACKGROUND 

3.1 Requirement Dependencies (RDs) 

RD plays a critical role in the RP process [6]. They can be categorized into two types: implicit dependencies and explicit 

dependencies. Explicit dependencies among requirements mean that the interdependence is obvious and can be extracted 

easily through basic dependency analysis techniques. On the other hand, implicit dependencies among requirement pairs 

are hidden and require stronger analysis and reasoning abilities for extraction. This type of dependency is considered a 

challenge, as its extraction requires strong semantic analysis and domain knowledge. Dependencies among requirements 

can also be classified as internal or external. Internal dependencies occur because of internal system attributes. It has many 

types, such as combination, exclusion, and implication (requires). Combination dependency is a pair of requirements that 

should be developed together. Exclusion refers to a pair of requirements that can be developed together. The 

implementation of a relationship is a requirement that needs to be implemented first (which is our focus in this paper). 

External dependency is the external attribute that affects the system. It has two common types: value-related, which are 

requirements that affect the cost or revenue of the system, and time-related, which means that some requirements must be 

implemented within a specific deadline and project schedule. 

3.2 Large Language Models (LLMs) 

In recent years, LLMs have achieved high performance in NLP tasks, such as contextual understanding, semantic similarity 

analysis, and RD extraction [23,26]. They have been considered among the most powerful tools in RE (especially in 

relationship analysis among requirements because of their superiority in capturing deep semantic meaning [23,26]. In the 

RE field, they are superior because of their ability to understand contextual meaning, which helps in requirements analysis. 

They introduce significant benefits in the RE field by automating manual tasks that require extensive human effort, such 

as requirement elicitation, prioritization, and classification. They also offer contextual understanding, which helps in 

dependency analysis and can streamline the overall requirements analysis, improving the efficiency and accuracy of the 

software development process. For dependency analysis, LLMs can be trained and fine-tuned on a set of requirements, 
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where each pair has no dependency or has a forewarned or revised dependency. This is helpful when requirements are 

written in human language, and LLMs help to understand the relationships among them. 

 

 LLMs are also integrated with a semantic similarity measure; for example, embeddings produced by large models can be 

calculated and measured via cosine similarity to detect coherent requirements. This approach reduces negative and positive 

false positives and enhances robustness. In our proposed algorithm, LLMs are the main stage in the dependency analysis 

mechanism after NLP analysis [23]. This first stage uses syntactic features and grammar to filter nonrelated pairs of 

requirements and detect related ones. This stage applies a fine-tuned model to the detected requirements pairs, performing 

an accurate dependency analysis via its deep domain and contextual understanding. This hybrid of NLP and LLM balances 

precision and efficiency: NLP reduces the search space by detecting grammatical cues, and LLM ensures high-quality 

dependency analysis. Overall, LLMs are a transformative advancement in requirements dependency analysis. Their 

adaptability to fine-tuning, ability for contextual reasoning, and integration with a similarity-based approach make them 

robust and powerful components in a new dependency-aware prioritization framework. Several studies have emphasized 

that LLM models can outperform traditional keyword and rule-based techniques in discovering complex and implicit RDs 

that are not obvious or explicitly stated [12,20,25,26]. They consider them one of the state-of-the-art baselines for semantic 

extraction in modern RE workflows. Therefore, this study considered LLM models as one of the strongest baselines to 

assess the efficiency and effectiveness of our proposed dependency-aware RP algorithm. 

 

3.3 Enhanced-Analytical Hierarchy Process (E-AHP) 

Many researchers emphasize that the AHP [30] is one of the most accurate RP techniques, as it applies strong mathematical 

equations [31-34]. However, the AHP is suitable only when a small number of requirements are prioritized, as it is based 

on pairwise comparison, which increases exponentially with the number of requirements [13,31]. Like the other RP 

techniques, it also cannot handle RDs. Furthermore, the results become inconsistent with many requirements. 

Therefore, the AHP has four main limitations [13,31]: 

 So, the AHP has four main limitations [13,31]:  

1. Its performance degrades significantly with large requirement numbers. 

2. It produces inconsistent results as its steps include a high level of human involvement.  

3. It is not easy to understand how to use, especially the consistency checking mechanism 

4. It does not handle RD during the RP process (like almost all RP techniques).  

The first, second, and third issues have been addressed in our previously published research by introducing the E-AHP 

algorithm [13], which enhances the scalability and results consistency of the AHP, enabling it to handle large 

requirements with acceptable accuracy. E-AHP [13] introduces algorithmic refinements that significantly reduce 

computational complexity (time and memory consumption) and enhance the consistency of the results. The E-AHP 

solves the AHP problems as follows: 

 It increases the scalability by minimizing the time the AHP takes in the pairwise comparisons. It groups the coherent 
requirements, making pairwise comparisons among groups of requirements instead of separate requirements, which 
decreases the matrix size, saving time and memory. 

 It reduces the inconsistency of the AHP by allowing users to score each group of requirements instead of performing 
pairwise comparisons among each pair of requirements. 

 It also introduces another new consistency checking mechanism instead of the complex mechanism in the AHP, 
making it simple and easy to understand. 

E-AHP was validated via a large dataset (up to 500 requirements) against conventional AHP and another recent 

improvement algorithm called ReDCCahp [35]. It has proven superior performance in terms of scalability, RP accuracy, 

and result consistency [13]. However, it does not address the fourth limitation, as it does not consider RD during the RP 

process. This research refines our previous E-AHP algorithm by integrating a novel AI-based dependency-aware 

mechanism into the RP process, enhancing its realism and accuracy in real-world and complex software projects. Moreover, 

we refine the requirements scoring and grouping mechanisms of E-AHP by replacing heuristic rules with structured rules. 

(Fig.1). shows the differences and improvements in E-AHP over AHP, and DA-EAHP over E-AHP. 
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Fig.1. The differences and improvements in E-AHP over AHP, and DA-EAHP over E-AHP 

 

4. PROPOSED ALGORITHM: DA-EAHP 

This section presents our proposed algorithm, DA-EAHP, an enhanced version of our previously proposed E-AHP 

algorithm [13]. While the E-AHP focuses on prioritizing large requirements, the DA-EAHP improves it further by 

considering RD during prioritization, specifically of the type “requires. This enables more accurate and context-aware 

prioritization results that reflect real-world constraints among software requirements. The following subsections describe 

the algorithm steps in detail. 

4.1 Requirements Gathering and Labelling 

The first step is to gather and specify all the requirements that will form the SRS, input for the analysis phase. Each 

statement will represent one requirement. The analysts should ensure that the requirements list in the SRS is complete, 

clear, and consistent. Each requirement will have an ID, making it easy to modify and refer to. These IDs will have a format 

like R1, R2, R3, etc. Mapping is built to connect each requirement to its ID and vice versa. These mappings are critical for 

efficiently referencing and processing the requirements in the next phases. 

4.2 Keyword-based requirements Scoring 

In this step, we implement a scoring system to assign a score to each word in each requirement statement. Some important 

fixed and dynamic keywords are defined and weighted (scored) based on their importance within the project context. Fixed 

keyword scoring means defining common keywords in most projects, such as ‘login’, and giving them a specific score. 

Dynamic keyword scoring assigns a score based on the ability to extract project-related keywords dynamically by analyzing 

the context and frequency of the terms in the SRS document. In this step, a final score for each requirement statement is 

calculated by summing the score weights for each word in the statement based on the dynamic and fixed keyword weights. 

After the scoring process is complete, the algorithm sorts the requirements by their scores in descending order. A hybrid 

algorithm of merge sort and insertion sort [36] is applied to sort the list of requirement scores. 

4.3 Automatic Grouping for Coherent Requirements 

The algorithm in this phase groups requirements whose score difference is less than the maximum difference requirements 

score (MaxDRS), where MaxDRS represents the allowed score difference among the requirements in a group. Another 

defined variable is the maximum number of requirements (MaxNR), which is the maximum number in the same group. 

The algorithm automatically calculates MaxDRS via the following equation. 
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𝑀𝑎𝑥𝐷𝑅𝑆 =
σ(𝑆(𝑅𝑖))

2
   (1) 

where σ is the standard deviation (SD) of the score values. The SD measures the dispersion or spreads of the score values 

around the mean [37]. The grouping threshold is set to half MaxDRS to balance specificity and sensitivity. Dividing it by 

2 enables group variability and prevents grouping the requirements with highly divergent scores, ensuring that only the 

requirements with sufficiently strong dependency or semantic links are grouped [13]. For example, if the SD is 4, then 

MaxDRS will be 2, which means that the difference in the requirements in the same group is less than or equal to 2. It 

adapts to the data characteristics and ensures that the requirements are grouped based on the spread of scores. The algorithm 

calculates the value of MaxNR via the following equation: 

 

MaxNR = √int (n) (2) 

Where n is the number of requirements, and the square root is used, as it offers a balanced way to specify the group size. It 
scales appropriately with the dataset size, as the group sizes are neither too small nor too large. Therefore, when the square 
root function is applied to the requirements grouping process, it adjusts automatically based on the total number. For example, 
if the number of requirements is 25, MaxNR will be 5, which means that the maximum number of requirements in one group 
is 5. To assign a general score for each group, the algorithm calculates the average score of all included requirements in that 
group. 

4.4 Constructing the pairwise comparison matrix 

The algorithm then creates a pairwise comparison matrix for each group of requirements. The columns and rows of each 
matrix represent the requirement groups, and the matrix cells are the score differences among the groups. For example, if the 
score of Group 1 (G1) is 4 and the score of Group 2 (G2) is 2, then the value of the intersection cell between G1 and G2 will 
be 2 (4/2) and will be .5 (2/4) between rows G2 and G1. The algorithm then normalizes the matrix to ensure that each column 
has a sum of one. After that, the algorithm performs the same mathematical operation as the AHP to obtain the initial PV. 

4.5 Dependency Analysis Process 

In alignment with the RP process, the algorithm includes an RD extraction mechanism that focuses on the "requires" 

dependency type among requirements, effectively ensuring the implementation of the requirements in the correct logical 

order. This makes the RP not only based on important aspects but also on the functional RD. To achieve effective 

dependency analysis, the process consists of two layers that combine the power of both the LLMs and the NLP, which 

enables the extraction of two main types of RDs: explicit and implicit. The extracted RD from the following two RD 

handling steps is combined into a one-directed graph, where each node represents a requirements statement and each edge 

represents a required-type relationship between them [18]. 

 

4.5.1 Syntactic Dependency Extraction (via Rule-Based approach and NLP) 

The step applies a widely used NLP library called “SpaCy” [38] to perform lexical and syntactic analysis on each 

requirement statement. It includes common preprocessing steps such as tokenization, part-of-speech tagging, and 

dependency parsing. It serves as an interpretable mechanism for capturing grammatically implied or explicit dependency, 

as it focuses on structurally apparent cues and provides an explainable and robust foundation upon which the semantic 

dependency analysis can be built. The algorithm applies heuristic rules to discover grammatically supported and explicit 

RDs. These rules include the following: (1) Keyword-based dependencies, which are identified via the presence of 

sequencing words such as “required”, “after”, “dependent on”, and “must”. (2) Referential links: where the determiners or 

pronouns such as “it”, “that”, and “this”, refer to requirements that were mentioned previously, showing contextual 

dependency. 

 

4.5.2 Semantic Dependency Extraction Using LLMs  

This stage combines the LLM's semantic similarity computation to uncover non-explicit RDs and conceptually meaningful 

relationships that may not be discovered via keywords or grammatical rules in the previous step. We specifically fine-tuned 

a pretrained bidirectional encoder representation from the Transformers (BERT) model [39] from Hugging Face [40] to 

determine "requires"-type RD. BERT was selected because it has been proven effective in semantic analysis and RD 

handling in prior studies [20,25,39,40]. Moreover, it can be fine-tuned in domain-specific tasks, allowing our algorithm to 

detect dependencies accurately and enhance performance while maintaining computational and memory consumption 

efficiency. First, it encodes each requirement statement into a semantic vector representing the contextual meaning of 

requirements, enabling deeper semantic understanding. Then, a cosine similarity is calculated among each pair of vectors; 

a similarity is indicated when the similarity score among vectors exceeds a predefined threshold (for example, cosine 

similarity is above .8). This step identifies explicit relationships, such as “setup” before “use” and “authentication” before 
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“access”. For example, if there are two statements: “The system should enable the users to sign in securely” and “The user 

can reset the password “, this pair of requirements has no explicit relationship terms; their semantic similarity indicates a 

prerequisite dependency. 

4.6 Integration of dependency analysis with prioritization results. 

The priority score in the PV of each requirement is adjusted based on the resulting RD to reflect the correct logical 
implementation order. The dependent requirements will have lower priority, and the autonomous requirements will have 
higher priority. The algorithm considers direct and transitive RD. If a requirement directly depends on another requirement, 
its priority must reflect the importance of all prerequisite requirements. If one requires another indirectly, its priority must 
account for all preceding requirements. The algorithm then updates the criteria score in the priority vector via the following 
equation: 

𝑃𝑉′[𝑖] =  𝑃𝑉′ [𝑗] ∗ (1 − 𝐷𝐼𝐹)  + 𝜀   (3) 

The DIF variable refers to the dependency influence factor, which means the highest number of dependencies for a specific 
requirement in the RD sets. When the priorities are updated, the priority score is updated with the resulting DIF, and the 
algorithm normalizes the scores again to ensure that their summation is 1. Note that to prevent result distortion due to zero 
values and maintain a fair and balanced contribution of all requirements (if the PV calculation is repeated later, dependency 
relationships have been updated or changed), a constant (.001) is added to each new PV to ensure numerical stability and 
preserve the proportional relationship. After that, the algorithm will sort the requirements in descending order by their new 
updated score and output the final priority list. For example, let us consider the values in Table II. Assume that there are 5 
requirements: R1, R2, R3, R4, and R5. Their score values in the PV after matrix construction are (0.15, 0.25, 0.2, 0.3, 0.1). 
Fig. 2 shows the RD values in Table II. 

TABLE II. EXAMPLE OF REQUIREMENTS AND THEIR DEPENDENCIES.  

Requirements Depends on # Dependencies 

R1 R3 1 

R2 R1, R3 2 

R3 - 0 

R4 R1, R2, R3 3 

R5 - 0 

 

Fig.2. Example of Requirements and Their Dependencies. 
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In this example, the maximum dependencies are 3 (as R1, R4, and R2 depend on R3), so the DIF here is 3. By applying the 

following equation, we can obtain the updated normalized priority vector score for requirements and their normalization 

(by dividing each updated PV value by its new sum) via the following equation: 

 

                                 𝑃𝑉′[𝑖] =
𝑃𝑉′[𝑖]

∑𝑃𝑉′[𝑗]
                         (4) 

Equations (3) and (4) can be integrated into the following equation:  

 

𝑃𝑉′′[𝑖] =
 𝑃𝑉′[𝑖] ∗ (1 − 𝐷𝐼𝐹)

∑𝑃𝑉′[𝑗] ∗ (1 − 𝐷𝐼𝐹 )  + 𝜀
                    (5) 

So, by compensation in (3) and (4), the final updated priority values are as follows: 

 

𝑃𝑉′(𝑅1) = (1 − (
1

3
)) ∗ .15 + .001 = 0.10  𝑃𝑉′′(𝑅1) = (

. 1

. 48
) = 0.20 

𝑃𝑉′(𝑅2) = (1 − (
2

3
)) ∗ .25 + .001 = 0.08 𝑃𝑉′′(𝑅2) = (

. 08

. 48
) = 0.16 

 𝑃𝑉′(𝑅3) = (1 − (
0

3
)) ∗ .20 +  .001 = 0.20 𝑃𝑉′′(𝑅3) = (

. 2

. 48
) = 0.41 

      𝑃𝑉′(𝑅4) = (1 − (
3

3
)) ∗ .30 + .001 = 0.001      𝑃𝑉′′(𝑅4) = (

. 0

. 48
) = 0.001 

 𝑃𝑉′(𝑅5) = (1 − (
0

3
)) ∗ .10 + .001 = 0.10 𝑃𝑉′′(𝑅5) = (

. 1

. 48
) = 0.20 

 

So, we can note here that the PV for R3 has been increased from 0.2 to 0.41, as many requirements depend on it (R1, R2, 

and R4); on the other hand, the PV of R4 has been decreased from 0.3 to 0.001, as it depends on many requirements (R1, 

R2, and R3). We can compensate directly in equation (5), but we chose compensation in (3) and (4) in the example to 

increase clarity. Note that if multiple requirements are the same, 𝑃𝑉′′, such as R1 and R5, the algorithm will keep the 

original PV value from step 4.4. Therefore, R1 will have a higher rank than R5 as it has a higher PV value. The flow chart 

in Fig.3 and Algorithm 1 explain and clarify our proposed algorithm:  
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Fig.3. Flow Chart for The Proposed Algorithm. 
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Algorithm 1: Dependency-Aware E-AHP (DA-EAHP) Algorithm  

Input data: Requirements list 𝑅 =  { 𝑅1, 𝑅2, … , 𝑅𝑁} where N is the total number of requirements. 

Output: Prioritized-dependency-aware requirements list 𝑅′. 

Step 1: Score requirements in R as follows: 

Step 1.1: Specify a list of fixed keywords  Kfixed  with an assigned fixed weight Wfixed for each  Kfixed. 

Step 1.2: Extract dynamic keywords  Kdynamic Using context and frequency analysis, assign a dynamic 

weightWdynamic  for each  Kdynamic. 

Step 1.3: for each 𝑅𝑖, calculate score Sfixed (𝑅𝑖) , as the sum of 𝑊𝑓𝑖𝑥𝑒𝑑   for each Kfixed  in 𝑅𝑖. 

Step 1.4: for each 𝑅𝑖 , calculate score   Sdynamic (𝑅𝑖) as the sum of 𝑊𝑑𝑦𝑛𝑎𝑚𝑖𝑐  for each K in 𝑅𝑖 . 

Step 1.5: for each 𝑅𝑖, calculate the total score  𝑆(𝑅𝑖) =  Sfixed(𝑅𝑖) +  Sdynamic(𝑅𝑖) . 

Step 2: Sort requirements R by their scores 𝑆(𝑅𝑖) using a hybrid algorithm of merge sort and insertion sort 

algorithms. 

Step 3: Calculate MaxDRS using Eq. (1), and MaxNR using Eq. (2), group sorted requirements while ensuring 

that the difference between all scores in one group is ≤ MaxDRS, and the number of requirements per group is 

≤ MaxNR. 

Step 4: for each requirement group pair  𝐺𝑘  and 𝐺𝑗 , where k is the row and j is the column of the matrix M,  

create a PWC Matrix 𝑀𝑘𝑗 based on their score values, if 𝑆(𝐺𝑘) = 𝑆(𝐺𝑗), Set 𝑀𝑘𝑗 = 1 , else set 𝑀𝑘𝑗 =
𝑆(𝐺𝑘)

𝑆(𝐺𝑗)
 . 

Step 5: Normalize M by dividing each cell by the sum of its column as follows 𝑀′𝑘𝑗 =
𝑀𝑘𝑗

∑𝑀𝑗
  . 

Step 6: Calculate the PV for each 𝐺𝑘 by summing its row in M' and dividing it by N.   𝑃𝑉(𝐺𝐾) =  
𝑀′𝑘

𝑁
 . 

Step 7: Extract the existing RD: 

Step 7.1: Parse each requirement 𝑅𝑖 using SpaCy to identify explicit RD. 

Step 7.2: Each pair of requirements (Ri, Rj) is compared semantically by generating semantic embeddings 

using a fine-tuned pre-trained BERT model to detect whether a "requires" dependency exists between Ri 

and Rj 

Step 7.3: Assuming D is the dependency list 

 If similarity (Ri, Rj) ≥ 0.8, then: 

If Ri depends on Rj, then: 

Then, add (Ri → Rj) to D. 

If Rj depends on Ri, then: 

Then, add (Rj → Ri) to D. 

Step 7.4: Construct a graph 𝐺 Nodes represent requirements, and edges represent dependency relationships 

among them. 

Step 8: Integrate Dependency extraction with prioritization results: 

Step 8.1: Update the PV using DIF by applying Eq. (3) to get  𝑃𝑉′. 

Step 8.2: Normalize the updated PV, making ∑𝑃𝑉′
𝑖 = 1  by applying Eq. (4) and getting the final 

normalized priority vector 𝑃𝑉′′, or get it directly by applying Eq. (5) instead of (3) and (4). 

Step 9: Sort requirements based on 𝑃𝑉′′ to get 𝑅′. 
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5. EXPERIMENTAL SETUP 

This section discusses the research experimental details that compare our proposed algorithm against two recent RD 

handling algorithms in terms of accuracy and performance (computational complexity), with variant data set sizes ranging 

from small to large. The following subsections mention the experiment objectives and set-up details.   

5.1 Experiment Objectives 

The objective of the experiment is to assess our novel proposed dependency-aware DA-EAHP algorithm, a fuzzy-based 
model[18], a zero-shot GPT-3.5 LLM-based model, and a zero-shot robustly optimized BERT approach (RoBERTa),  based 
on their RD analysis accuracy, computational complexity, and scalability (note that we don’t evaluate the prioritization 
results, as our previous version of our algorithm, E-AHP, has already achieved superior performance in RP, and also, there 
are no current existing algorithms that integrate both process handling and RP to compare with). Below are the research 
questions of our research: 

RQ1: What is the performance of the three algorithms concerning completion time and memory usage when dealing with 

different data set sizes?  

RQ2: What is the accuracy of the three algorithms' dependency extraction when dealing with different data set sizes?  

RQ3: What is the impact of incorporating the dependency awareness, specifically of type “requires”, on the RP process? 

5.2 Experiment Setup  

We compare three algorithms in this paper: (1) our proposed algorithm, DA-EAHP, which integrates the RD analysis process 
into E-AHP; (2) a recent RD handling model [18] that integrates a fuzzy graph with integer programming, which is selected 
because it focuses on extracting RD of type “requires”, which aligns with our focus and has a strong structure; and (3) a 
purely LLM-based model that uses the GPT-3.5 model in the zero-shot setting, without any fine tuning (4), and the zero-
shot RoBERTa model [41], all of which were evaluated on the PURE dataset, due to its popularity in the RE field [42]. These 
baselines enable a fair comparison among the integration of rule-based and fine-tuned BERT LLM models, fuzzy models, 
and purely data-driven LLM models in zero-shot settings.   These algorithms were evaluated in terms of two main criteria: 
accuracy and performance. 

The accuracy assessment evaluates each algorithm’s RD extraction results via different accuracy metrics, including the recall, 
F1-score, and precision. To create the ground truth for RD assessments (because the PURE dataset and most of the RE real-
world datasets lack RD labels) [42], five domain experts (senior software engineers, selected based on their strong 
background and practical experience; exceeding 8 years;   in the software engineering field.) were asked to extract the 
‘require’ dependency type between each pair of requirements from 50 randomly selected requirements from the PURE 
dataset, which builds a solid ground truth and reference to evaluate the RD extraction accuracy of our algorithms (the use of 
5 experts was sufficient, as the AHP relies on subjective judgment rather than a large number of requirements [30]). Then, a 
Google form containing the results of each algorithm (the detected pair of RDs) based on the same requirements was given 
to the experts to evaluate their accuracy by comparing the three algorithms' dependency extraction results with the expert 
results. 

To conduct a performance and scalability assessment for the three algorithms, they were evaluated on various-sized subsets 
from the PURE dataset, ranging from 25 500 requirements, which are small, medium, and large datasets. The dataset was 
divided into three subsets: 80% for the training task, 10% for the validation task, and 10% for the testing task.   Each dataset 
sample is saved as a text file, with one requirement per line, keeping the structure and meaning consistent across all datasets. 
The execution time was calculated and measured in seconds (sec). Memory usage was also calculated and measured in 
megabytes (MBs).To assess the impact of adding a dependency awareness mechanism in our proposed RP algorithm, we 
compare it with another variant that neglects the RD analysis phase. We ask the experts to prioritize the same 50 requirements 
based on their logical order. The form contains the prioritization results for the requirements of the two versions, which are 
assessed via top-k agreement to compare the top-k requirements resulting from each version (with and without RD handling) 
against the prioritization list produced by experts. It reflects the number of top-k-highest requirements correctly identified 
by each version, taking the experts’ results as the ground truth. 

The experiment was conducted on a machine with a CPU: 11th Gen Intel(R) Core (TM) i7-11800H @ 2.30 GHz, 2.30 GHz, 
RAM: 16.0 GB, system type: 64-bit operating system, x64-based processor, and OS: Windows 11 version 23H2. The three 
algorithms were written in Python version 3.11. The (en_core_web_sm) library from the SpaCy model was used for keyword 
parsing and extraction [38]. For RD extraction and semantic similarity, (all-MiniLM-L6-v2) from sentence-BERT was used 
[39]. The Matplotlib library is used for data visualization, the NetworkX library is used for graph analysis, Pandas is used, 
and the NumPy library is used for data manipulation [38]. To optimize the performance of our proposed algorithm, parallel 
processing is employed during the dependency detection phase, specifically for the pairwise similarity calculation among 
requirements, which is based on LLM embedding. The algorithm parallelizes the process across multiple CPU cores. This 
optimization reduces the time and memory requirements, making the algorithm more applicable to large real-world datasets. 
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6. RESULTS AND DISCUSSION 

6.1 Results 

This section evaluates the algorithms’ accuracy and performance. Tables III and IV present the average time taken and 
memory used. The charts in Figs. 4 and 5 visualize the results in Tables III and IV, respectively. They show that our proposed 
algorithm demonstrates superior time and memory efficiency. The difference among the algorithms becomes large when the 
requirements increase, which proves our algorithm's scalability and performance efficiency.  

Table III. Time taken by the DA-EAHP, zero-shot (GPT 3.5 and RoBERTa) LLM models, and fuzzy logic in sec. 

Number of 

Requirements 
DA-EAHP Zero-shot GPT-3.5 Fuzzy logic Zero-shot RoBERTa 

25 3.4 9.9 18.5 11.6 

50 5.7 14.2 34.3 17.4 

100 13.2 27.1 68.5 31.5 

200 25.8 53.2 146.8 62.8 

300 38.7 81.4 223.7 98.5 

400 52.9 107.2 296.3 132.1 

500 65.2 136.7 361.2 168.0 

 

TABLE IV. MEMORY CONSUMPTION BY THE DA-EAHP, ZERO-SHOT (GPT 3.5 AND ROBERTA) LLM MODELS, AND FUZZY LOGIC IN MB. 

Number of 

Requirements 
DA-EAHP Zero-shot GPT-3.5  Fuzzy logic 

Zero-shot RoBERTa 

25 67.2 204.7 114.2 221 

50 89.9 281.2 161.5 301 

100 153.2 522.1 363.9 584 

200 268.2 971.2 784.6 1131 

300 372.3 1438.2 1189.9 1675 

400 481.8 1901.7 1581.5 2234 

500 590.5 2401.3 2052.7 2752 

 

 

Fig.4. Time taken by the DA-EAHP, DA-EAHP, and zero-shot (GPT 3.5 and RoBERTa) LLM models, and the fuzzy logic zero-model in sec. 
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Fig.5.Memory consumption by DA-EAHP, zero-shot (GPT 3.5 and RoBERTa) LLM models, fuzzy logic in MB 

Table V shows the accuracy, recall, precision, and F1-score of the proposed method based on the experts' annotations for 
RD. Our proposed algorithm outperforms the zero-shot LLM and fuzzy graph-based models, aligning with the judgments of 
the experts involved, as it achieves the highest accuracy metrics based on the experts' annotated dependencies.  

TABLE V. ACCURACY METRICS FOR DA-EAHP, ZERO-SHOT GPT-3.5, FUZZY-BASED, AND ZERO-SHOT ROBERTA 

Accuracy Metric DA-EAHP Zero-shot GPT-3.5 Fuzzy-Based 
Zero-shot 

RoBERTa 

Accuracy 0.92 0.85 0.736 0.82 

Precision 0.92 0.84 0.72 0.81 

Recall 0.93 0.86 0.75 0.80 

F1-Score 0.90 0.85 0.73 0.816 

 

We perform a paired t-test between DA-EAHP and each baseline mode to assess the significance of the performance 
differences. Specifically, DA-EAHP achieved a 6.75%enhancement (SD = 1.8%) over zero-shot GPT 3.5 (t = 10.7, p-value 
= 0.0017), a 10.6% enhancement (SD = 2.1%) over the zero-shot RoBERTa model (t = 11.01, p- value = 0.0016) and an 
18.35% enhancement (SD = 2.4%) over the fuzzy model (t = 29.42, p < 0.0001). Therefore, the results show that DA-EAHP 
significantly outperforms the other baselines, with p-values <0.001. These results confirm the statistical significance and 
robustness of our proposed algorithm’s superiority. Table VI shows the top-k agreement of the prioritization results produced 
by the two versions of the DA-EAHP algorithm (with and without dependency) with the experts' prioritization results. It 
shows the proportion of top requirements in terms of agreement between the results produced by each version and the experts' 
results. For example, if the tested algorithm and expert produce the same top 8 highest requirements out of the top 10 
requirements, the result in the table will be .8 (80%). It clarifies the impact of handling RDs in the RP process on prioritization 
accuracy based on agreements with experts. Table VI shows that handling RDs in the RP process impacts the RP positively. 
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TABLE VI. TOP-K AGREEMENT BETWEEN DA-EAHP (WITH RD HANDLING) AND EAHP (WITHOUT RD HANDLING) WITH EXPERTS' RESULTS. 

Number of Requirements DA-EAHP (With RD handling) 
EAHP (Without RD 

handling) 

10 0.90 0.80 

25 0.88 0.79 

50 0.87 0.73 

 

6.1 Discussion 

6.2.1 Performance evaluation    

Figs. 4 and 5 show that our proposed algorithm has proven performance superiority in terms of time and memory. This 

happens for many reasons. One of the main reasons for complexity efficiency is the partial use of LLMs for computing the 

semantic similarity in RD detection instead of entirely depending on LLMs. It applies the LLM model only when semantic 

ambiguity among requirements is detected using lightweight NLP in an early stage. This selective use of LLM results in 

good semantic and context understanding while reducing computational overhead. Moreover, the fine-tuning of the BERT 

model minimizes computational complexity as the model learns through the training phase and no longer needs long 

runtime reasoning, making inference more efficient, lighter, and faster for repeated use. On the other hand, zero-shot LLM 

models, such as GPT-3 and RoBERTa, require considerable computational complexity because they rely on on-the-fly 

reasoning, making inference time usage and memory less efficient for repeated or large tasks. Another main reason is that 

the proposed algorithm avoids the classical large number of pairwise comparisons in the basic AHP (which increases 

exponentially with the number of requirements) that increases time and memory (as the matrix size increases and the 

number of operations increases); instead, it scores the requirements via a combination of dynamic and static key-weighted 

scoring mechanisms and applies early automatic grouping for the requirements based on their scores, which avoids 

encoding and comparing every pair of requirements, minimizes the matrix size, and the number of operations needed. These 

automatic scoring and grouping mechanisms lead to fast processing and a noticeable reduction in time and memory, 

achieving more scalable performance in practice. 

On the other hand, the fuzzy graph-based model becomes computationally expensive, especially with large datasets, as it 

integrates fuzzy graphs with integer programming, which involves matrix operations and optimization. Like basic AHP, 

the size of matrix operations increases significantly with the requirements, which increases the computational overhead, 

including time and memory. Moreover, when the dataset size increases, the graph produced by the fuzzy-based model 

becomes unreadable and impractical to interpret, limiting its scalability, explainability, and usability in large systems. 

Furthermore, its algorithm relies on Elles’ measure of strength [18], requiring triple-nested iterations among each 

requirement pair, which results in cubic time complexity. The algorithm also stores RD matrices and propagates their 

strengths through transactional relationships [18], resulting in high memory consumption and significantly reduced 

performance as the requirements increase. 

 

6.2.2 Accuracy evaluation 

From the RD extraction accuracy perspective, Table V shows that the proposed algorithm achieves the highest accuracy 
metrics compared with the other algorithms. The dual use of LLM and advanced NLP embedding enables the identification 
of explicit and implicit, nuanced, and hidden RDs, achieving higher accuracy metrics than when the LLM model is used 
only. The participants confirmed that the proposed algorithm outperformed zero-shot LLM models, such as GPT-3 and 
RoBERTa, and fuzzy-based models in detecting fine-grained relationships.   On the other hand, the fuzzy-based model fails 
to capture implicit RDs, as it employs a fuzzy graph-based method to extract RDs, which relies solely on fuzzy thresholds 
and a prespecified relationship, thereby degrading its accuracy when dealing with subtle, new, or complex RDs that are not 
prespecified. Additionally, they may neglect semantic similarities and fail to capture RDs with the same meaning but 
different wording. This results in a higher rate of false negatives, which affects the accuracy of RD extraction. Another main 
reason for the superiority of the DA-EAHP model over the GPT-3 and RoBERTa models is that the pure-LLM models were 
assisted in a zero-shot setting. In contrast, DA-EAHP was designed and optimized for the target dataset. The tuning for the 
task enables DA-EAHP to achieve higher accuracy in RD detection, as it allows more context-aware and precise prediction, 
leading to more reliable output. Moreover, while the zero-shot LLM models work as a black box [43], the proposed algorithm 
has strong and clear structured steps, domain-specific keyword-based scoring, and a logic-based grouping mechanism. This 
provides clear transparency for the detected RD and prioritized ranking. This generally improves the prioritization results 
and decision transparency. DA-EAHP improves the k-agreements because it prioritizes the requirements in the correct logical 
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order, increases the prioritization accuracy, and enhances consensus among users. Therefore, the results show that it can 
handle large numbers and maintain accuracy, confirming its scalability and generalizability, as it achieves the best 
performance across different dataset sizes, showing robustness in small, medium-, and large-scale prioritization tasks. 
Overall, the proposed algorithm provides an effective balance between transparency, accuracy, computational complexity, 
and scalability, which is essential for a real-world software project. 

6.2.3 Key findings 

Below is a list of the summarized key findings:  

 The DA-EAHP algorithm has less computational complexity than the baseline zero-shot LLM models due to its 
partial use of LLM semantics, in addition to lightweight NLP, instead of fully relying on LLM in the RD extraction 
phase. 

 DA-EAHP outperforms baseline zero-shot LLM models in performance (computational complexity) and accuracy 
to its specific task design; on the other hand, it was evaluated in a zero-shot setting without fine-tuning. 

 Although the baseline zero-shot LLM models produce accurate results [44] [45], they consume high amounts of 
memory due to the full attention given to all the tokens (input) and embedding generation, especially with large 
numbers, which affects their scalability and performance. 

 The DA-EAHP algorithm provides high-level transparency and interpretability, as it has clear formal and structural 
rules. Unlike the zero-shot LLM models, which lack transparency, they function as black boxes. Additionally, in a 
fuzzy-based model, the graph becomes non-interpretable with a medium or large number of requirements, affecting 
its interpretability. 

 DA-EAHP outperforms the baseline fuzzy-based model in performance, as the fuzzy-based model is based on fuzzy 
graphs, which become computationally expensive and time and memory-intensive with large requirements because 
it relies on pairwise matrix operations and optimization, making it scale poorly with the requirements. On the other 
hand, applying automatic and semantic scoring and grouping mechanisms into coherent requirements in DA-EAHP 
reduces time, memory, and human error. 

 The baseline fuzzy-based model fails to capture implicit RD effectively, as it neglects semantic similarity and 
depends on only the fuzzy threshold and pre-specified relationships, reducing its accuracy when dealing with subtle, 
new, or complex RDs. On the other hand, the DA-EAHP and zero-shot LLM models can discover explicit and 
implicit RDs, making them suitable for modern systems with complex RDs. 

 DA-EAHP increased K-agreements among domain experts, demonstrating its effectiveness in handling RDRDs and 
enhancing the prioritization results. 

 Therefore, we can conclude that, compared with the other baseline models, the DA-EAHP algorithm achieves the 
best accuracy, performance, transparency, and scalability. 

7. LIMITATIONS AND THREATS TO VALIDITY 

Despite extensive experiments, many potential threats to validity should be acknowledged. For internal validity, 

subjectivity is introduced due to the expert's annotations in establishing the ground truth, as the research relies on expert-

labelled ground truth, and the results can be sensitive to configuration parameters across the proposed algorithm scoring 

and LLM thresholds. The results may also depend on the requirements structure and phrasing. For external validity, the 

results rely highly on the selected LLM models; different models may output different results. The algorithm's scalability 

up to 500 requirements has not been tested. The proposed algorithm's performance might not be generalizable across all 

domains, as it was assessed only on the PURE dataset. 

 

8. CONCLUSION 

This research introduces a novel, comprehensive dependency-aware RP algorithm called DA-EAHP, which improves our 

previously proposed algorithm, E-AHP, by incorporating multilayer, nuanced semantic RD detection using LLMs and NLP 

into the optimized RP flow, which solves the challenge of neglecting RD while prioritizing. The experimental results show 

that our proposed algorithm demonstrates superior accuracy and performance even with large requirement numbers and 

shows its effectiveness in improving the prioritization results. It achieves the highest accuracy in RD analysis while 

maintaining the lowest computational complexity, significantly enhancing the RP process. On the other hand, although 

baseline zero-shot LLM-based and fuzzy-based models achieve good accuracy when applied to small- to medium-sized 
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requirements, their scalability and accuracy decrease significantly when the number of requirements increases. Overall, the 

proposed algorithm offers a robust, scalable, contextual, and semantically aware RP technique that advances the state of 

the art in the RE field. It lays a strong foundation for handling RD and RP processes in real-world, complex, and modern 

software projects by efficiently combining a deep semantic RD analysis mechanism and a strong rule-based prioritization 

approach.  

 

9. FUTURE WORK 

Several areas remain for further refinement: 

 Integrating domain-specific taxonomies or ontologies into the proposed algorithm can increase the contextual 
accuracy of RD detection and prioritization. 

 Development of a visual tool will enable stakeholders to adjust the requirements priority weights, conduct what-if 
analysis, and validate the decisions, increasing the algorithm's effectiveness. 

 More expert annotations for the benchmark dataset will enhance the research community and comparative studies. 

 We also aim to extend our proposed algorithm evaluation by conducting cross-domain validation across different 
datasets to ensure the algorithm's generalizability across different datasets. 

 Moreover, we investigate the applicability in a real-world project where challenges such as incomplete requirements 
and dynamic prioritization arise. Addressing these gaps will bridge the gap between practical deployment and 
academic experimentation in industry. 
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