A Robust Model for Android Malware Detection via ML and DL classifiers

Main Article Content

Omar Almomani
Areen Arabiat
Muneera Al Tayeb
Mohammed Amin Almaiah
Mansour Obeidat
Theyazn H. H. Aldhyani
Rami Shehab
Mahmood Rowad

Abstract

The rapid growth of sophisticated Android malware (AM) threats is significant, as Android devices often store private and sensitive personal and financial information. These threats allow stealing of data, interference with device functioning, and network compromise. One of the greatest difficulties in efficient interception systems is ensuring a high level of detection accuracy for distinguishable AM variants. This study focuses on developing a robust Android malware detection model via machine learning (ML) and deep learning (DL) techniques. The model combines ML classifiers, which consist of logistic regression (LR) and decision trees (DTs), and a DL classifier, an artificial neural network (ANN). The model was implemented via an open-source data mining program called Orange. The NATICUSdroid dataset was used to train and test the model, which was measured in terms of accuracy, precision, recall, F-measure and AUC. The experimental findings revealed that the ANN performed the best (accuracy: 98.0%, precision/recall/F-measure: 98.0%, AUC: 0.997) and was better than the LR (accuracy: 96.1%, AUC: 0.989) and DT (accuracy: 96.0%, AUC: 0.971) methods. The results highlight the high potential of DL-based approaches, especially ANNs, to detect Android malware and reinforce their suitability for enhancing mobile security systems.

Article Details

Section

Articles

How to Cite

A Robust Model for Android Malware Detection via ML and DL classifiers (O. Almomani, A. . Arabiat, M. Al Tayeb, M. . Amin Almaiah, M. . Obeidat, T. . H. H. Aldhyani, R. Shehab, & M. . Rowad , Trans.). (2025). Mesopotamian Journal of Big Data, 2025, 261–277. https://doi.org/10.58496/MJBD/2025/017

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)