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A B S T R A C T  
 

Liver disease (LD) is a world health concern that requires accurate diagnostic methods. This study 

proposes an optimized machine learning model (ML) based on BPSO for LD classification using a 

shared public dataset from kaggle Indicates to liver patients from India. The paper used six ML models 

such as Random Forest (RF), Support Vector Machine (SVM), Dummy Classifier (DC), Extra Trees 

Classifier (ET), K-Nearest Neighbors (KNN), and Logistic Regression (LT) to evaluate the 

performance. Through observations we detected that ET achieved an accuracy of 79.82%. The BPSO 

hyperparameter optimization optimized ET to enhance accuracy to reach 85%. The paper used metrics 

such as accuracy, precision, recall, F1 score, and AUC. The results indicate that ML techniques with 

optimization have the potential to develop reliable diagnostic tools for LD.   

1. INTRODUCTION 

There are millions of fatalities that occur every year due to LD, which is a worldwide health problem. An infection caused 

by the chronic hepatitis B virus (HBV) is a widespread illness that affects 257 million people globally and more than forty 

percent of cases have the potential to develop into more serious illnesses [1]. Early identification and antiviral therapy have 

the potential to stop the course of the disease; however, not all individuals require their treatment to be effective. It is 

possible that patients with liver fibrosis in the early stages merely require follow-up care, but individuals with substantial 

fibrosis require active intervention. Consequently, there is a want for biomarkers that are easily available, cost-effective, 

and trustworthy in order to evaluate the phases of liver fibrosis through the use of non-invasive procedures. 

The work uses Binary Particle Swarm Optimization to enhance liver disease categorization through machine learning. The 

shared Indian Kaggle liver patient dataset is used though the study. RF, SVM, DC, ET, KNN, and LR are utilized for 

evaluating the performance of classification. we noticed that the accuracy of classification improved by using BPSO. 

The findings offer some insights into the potential of ML techniques, when combined with optimization strategies, in the 

accurate classification of liver failure. The findings make a contribution to the ongoing efforts to develop diagnostic tools 

that are reliable and non-invasive, and that can assist medical professionals in the process of finding liver disease early on 

and making decisions regarding its management. 
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This paper examines the remaining sections as follows: Section 2 introduces relevant work for several studies that have 

been conducted on machine learning-based liver disease classification. Section 3 elucidates the suggested methodology, 

providing details on the application of the optimized approach to liver disease classification. Section 4 examines both the 

simulations and analysis that have been employed for the suggested model's performance testing. Eventually, the 

conclusion is discussed in Section 5, covering some potential concerns for future research. 

 

2. RELATED WORK 
Dritsas and Trigka [2] employed various ML models and examined a combination of approaches, drawing a comparison 

with respect to accuracy, precision, recall, F-measure, and area under the curve (AUC) for estimating the probability of 

liver disease. The experiments revealed the effectiveness of the Voting classifier, which could surpass other models and 

achieve an accuracy, recall, and F-measure of 80.1%, a precision of 80.4%, and an AUC of 88.4% assuming SMOTE with 

10-fold cross-validation. 

Shaban [3] highlighted the vital role of extracting the most significant features in the feature selection phase. This approach 

officially goes by IB2OA, which is short for Improved Binary Butterfly Optimization Algorithm. IB2OA is composed of 

two distinct phases: Primary Selection (PS) step and Final Selection (FS) step. Furthermore, they introduced two 

improvements to their model; the first is applied to the initial reduction of features, using the Information Gain (IG) 

technique, while the second is applied to BOA's initialization, employing Optimization Based on Opposition (OBO). They 

eventually applied five distinct classifiers— SVM, KNN, NB, DT, and RF—to LD patient recognition in the detection 

phase. A wide range of various experiments reveals the effectiveness of the proposed IB2OA, which could achieve higher 

precision, accuracy, recall, and F-score compared to other current top models. Furthermore, it has an average chosen feature 

score of 4.425, surpassing other models. They found that the KNN classifier achieved the highest accuracy in classification 

on those tested datasets, compared to all other classifiers examined. 

A combination of new ML approaches has been applied by Badvath et al. [4] to the classification phase. Furthermore, they 

conducted label encoding and data normalization, employing the min-max approach in the preprocessing phase. In the 

meantime, they applied the ConvNeXt approach to returning features, including age, gender, and Liver function tests (AST, 

ALT, alkaline phosphatase, bilirubin) in addition to Medical history and comorbidities. They also identified the boasted 

Grasshopper optimization algorithm (IGOA) and those critical features meant for the accuracy enhancement. They 

eventually employed the combination of the optimized ML approaches: naïve Bayes and logistic regression (ONBLR) for 

the liver cirrhosis disease classification in addition to the Harris Hawks optimization algorithm for enhancing the 

hyperparameters. The introduced ML approach demonstrated effective performance compared to other existing top 

approaches, achieving an accuracy of 99.18%, a Sensitivity of 99.12%, and a specificity of 98.92%. 

Suárez et al. [5] have introduced an approach designed for 191 patients in total in their study. Out of the total, 29 cases 

represented NAFLD-related HCC. Furthermore, they applied the extreme gradient boosting (XGB) approach for designing 

the reference predictive model. NAFLD-related HCC patients had a poorer prognosis than those with other potential 

etiologies related to HCC. They also proved alcohol consumption among NAFLD patients to be the most significant 

variable for the introduced predictive model, which demonstrates the poorest prognosis. Their study revealed the high 

effectiveness of XGB compared to other studied approaches, which managed to achieve the greatest values of the analyzed 

performance metrics. In summary, the study indicated that alcohol consumption, obesity, cirrhosis, and clinically 

significant portal hypertension (CSPH) among NAFLD-related HCC patients reflected a poorer prognosis than other 

etiologies and features. That predictive model designed by XGB for patient assessment could also demonstrate high 

effectiveness and performance. 

Theerthagiri and Siddalingaiah [6] have introduced RG-SVM, drawing a comparison with a number of existing algorithms, 

including LR, DT, KNN, and NB, as well as the introduced RG-SVM algorithms. They found that the algorithms LR, DT, 

KNN, and NB, and the introduced RG-SVM, could achieve an accuracy of 73, 80, 81, 54, and 93%, respectively. The 

introduced RG-SVM, which involves a recursive feature selection algorithm, demonstrated highly effective performance 

compared to other existing algorithms, featuring accuracy enhancement of 14–39% and MSE error reduction of 12–20%, 

while the sensitivity and specificity enhancements reached 5–26% and 34–72%, respectively, surpassing the results of the 

compared existing algorithms. Those conclusions can greatly support optimized decision-making and clinical tests made 

for liver disease patients. 

Zhang et al. [7] developed a DT model employing a combination of five serological biomarkers, which comprise HBV-

DNA, platelet, thrombin time, international normalized ratio, and albumin, along with the area under curve (AUC) values 

meant for the assessment of liver fibrosis phases (F0-1, F2, F3, and F4) of 0.898, 0.891, 0.907, and 0.944, respectively, 

within the training cohort, while the external validation cohort features AUC values of 0.906, 0.876, 0.931, and 0.933 for 

the liver fibrosis phases (F0-1, F2, F3, and F4), respectively. Depending on the cutoff value, the simulated risk classification 

highlighted how the DT model performance can accurately align with the pathological diagnosis outcomes when 
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distinguishing between hepatic fibrosis phases. The ML model, which applies five serum markers, can support accurate 

diagnosis of hepatic fibrosis phases and effective clinical tracking and treatment of CHB patients. 

Hendi et al. [8] developed an innovative approach named CNN+LSTM, which integrates the CNN along with LSTM 

networks. Their study concluded that the application of ML and DL can enhance the liver disease diagnosis and prognosis. 

The CNN+LSTM model could attain a high accuracy of 98.73% compared to other models, including CNN, RNN, and 

LSTM, demonstrating highly effective outcomes. In addition to its high accuracy, it could also achieve a precision of 99%, 

a recall of 98%, an F1 score of 98%, and an AUC of 99%, featuring high effectiveness in predicting liver diseases and 

supporting accurate disease diagnosis as well as prognosis. 

Agbozo and Balungu [9] stressed the significance of XAI in providing detailed demonstrations of those decisions made by 

AI to professionals in the biomedical application field, including physicians engaged in AI-powered clinical decisions on 

disease diagnosis, treatment, or prognosis. Their study has analyzed the Indian Patient Liver Dataset (IPLD), extracted 

from the Andhra Pradesh region. The deep learning model has achieved an accuracy score of 0.81 and been built on Keras-

Tensorflow, while the hyperparameter-tuned model had a 0.82 accuracy score. They applied GANs to the dataset 

oversampling to manage the imbalance existing in the target values. Furthermore, they incorporated the XAI of Shapley 

Values to elucidate the liver disease detection model as well as its predictive outcomes. 

Alizargar et al. [10] indicated the efficacy of the composite model in NAFLD diagnosis, involving random forest, XGBoost, 

and SVM approaches. That composite model has achieved exceptional performance metrics, featuring an accuracy of 0.99 

and an AUC of 1.00 while also demonstrating high precision and reliability. Their analysis revealed the significance of 

gender as a variable for NAFLD prediction and how highly it is associated with this disease. The introduced composite 

model featured improved diagnostic qualities in addition to highly optimized outcomes compared to other indicators, 

particularly HIS. These outcomes revealed the high effectiveness of the introduced composite model in early NAFLD 

detection and diagnosis, as well as screening tasks. 

Pumhirunroj et al. [11] have applied the ordinary least (OLS) model approach to the variable screening. They have also 

chosen the most effective combination of variables in order to create an innovative variable set using the principal of 

component analysis (PCA) technique. Their study demonstrated the effectiveness and accuracy of the forest classification 

and regression (FCR) model in predicting infection rates, which featured a 0.915 reliability score, followed by 0.794, 0.741, 

and 0.632 scores, respectively, based on the PCA factor. Furthermore, it provided comprehensive information regarding 

the factors associated with water body infection, including the length and density of hexagonally formed water flow lines, 

and it could also track the depth of each process. 

Table 1 shows the summary of some related LD classfication studies. 

 
TABLE I. SUMMARY OF THE MOST RECENT STUDIES ON LD CLASSIFICATIONS. 

Ref. Methodology/Algorithm Feature Selection/Optimization Models 

Dritsas & Trigka 

[2] 

Voting Classifier with SMOTE & 

10-fold CV 
- 

Voting 

Classifier 

Shaban [3] 
Improved Binary Butterfly 
Optimization Algorithm (IB2OA) 

Information Gain (IG) & 

Optimization Based on 

Opposition (OBO) 

SVM, KNN, 
NB, DT, RF 

Badvath et al. [4] 
ConvNeXt, ONBLR, Harris Hawks 

Optimization 

Label encoding, Min-max 
normalization, Grasshopper 

optimization 

Naive Bayes, 
Logistic 

Regression 

Suárez et al. [5] Extreme Gradient Boosting (XGB) - XGB 

Theerthagiri & 
Siddalingaiah [6] 

RG-SVM with Recursive Feature 
Selection 

Recursive Feature Selection 
RG-SVM, LR, 
DT, KNN, NB 

Zhang et al. [7] 
Decision Tree (DT) with 

Serological Biomarkers 

Selection of biomarkers (e.g., 

HBV-DNA, platelets) 
Decision Tree 

Hendi et al. [8] CNN + LSTM - 
CNN, RNN, 

LSTM 

Agbozo & Balungu 

[9] 

Deep Learning Model + GANs + 

XAI (Shapley Values) 

GANs for oversampling, Shapley 

Values for explainability 
Deep Learning 

Alizargar et al. [10] 
Composite Model (RF, XGBoost, 

SVM) 

Feature combination, 

hyperparameter tuning 

Composite 

Model 

Pumhirunroj et al. 

[11] 

Forest Classification and 

Regression (FCR) with OLS & 
PCA 

Principal Component Analysis 

(PCA) 
FCR 
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3. MATERIALS AND METHODS 

3.1. Dataset Description 
Kaggle's LD shared dataset of Indian liver patients is available at following  

https://www.kaggle.com/datasets/fatemehmehrparvar/liver-disorders . Age, gender, total bilirubin, alkaline phosphatase, 

albumin, and other various variables can be employed as clinical variables for the dataset classification. Liver disease 

patients are characterized by some target features. In dataset analysis, it is crucial to check for missing values, data 

distribution, and outliers that affect data quality. 

 
TABLE II. SOME TARGET FEATURES 

 age gender tb db alkphos sgpt sgot tp alb a/g_ratio selector 

count 570 570 570 570 570 570 570 570 570 570 570 

mean 1.25E-17 0.754386 4.67E-18 3.12E-17 7.48E-17 -1.87E-17 1.25E-17 -4.49E-16 -3.99E-16 1.54E-16 1.287719 

std 1.000878 0.430829 1.000878 1.000878 1.000878 1.000878 1.000878 1.000878 1.000878 1.000878 0.453097 

min -2.51721 0 -0.46655 -0.4937 -0.93339 -0.38457 -0.34195 -3.49136 -2.82491 -2.03585 1 

25% -0.73017 1 -0.40268 -0.45838 -0.4723 -0.31287 -0.29034 -0.64038 -0.68953 -0.77891 1 

50% 0.009297 1 -0.37074 -0.42305 -0.34173 -0.24669 -0.23529 0.095355 -0.06148 -0.05618 1 

75% 0.810385 1 -0.11525 -0.06979 0.025499 -0.10881 -0.07787 0.647158 0.817788 0.478022 2 

max 2.782295 1 11.44574 6.430271 7.419106 10.59096 16.58361 2.854369 2.953162 5.820003 2 

 

Figure 1 shows the correlation matrix of the utilized LD dataset extracted from Kaggle. 

 
Fig 1. heatmap of Kaggle kidney dataset. 

 

Figure 2 displays the distribution of numerical features. Figure 3 shows the boxplot of the shared LD dataset obtained from 

Kaggle. 
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Fig 2. distribution of numerical features. 
 

 
Fig 3. boxplot of LD dataset attributes. 

 

Figure 4 displays the density of dataset attributes. 

 
Fig 4. density of numerical features. 
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Figure 5 displays the pair plot of the LD dataset features. 

 
 

Fig. 5. pair plot of the features. 

 

3.2. Data Preprocessing 
The various preprocessing steps, including eliminating null values through imputation, normalizing data by Min-Max 

Scaling, and encoding categorical variables, particularly gender, with either one-hot encoding or label encoding, optimize 

the LD dataset for model training. Those steps are intended for keeping dataset quality and upscaling model performance, 

as well as maintaining appropriate feature scaling.  

 

3.3. Machine Learning Models 
1. Random Forest (RF) 

A composite model gathering predictions from several decision trees for classification performance enhancement.  

2. Support Vector Machine (SVM) 

A robust classifier determining the optimal hyperplane for class separation. 

3. Dummy Classifier (DC) 

Serves as a baseline to compare the performance of other models. 

4. Extra Trees Classifier (ET) 

A composite method that generates several decision trees, similar to Random Forest, but with improved performance due 

to randomness in feature selection. 

5. K-Nearest Neighbors (KNN) 

A distance-based algorithm that classifies data points based on the majority class of their neighbors. 

6. Logistic Regression (LR) 

A linear model used for binary classification, providing probability-based predictions. 

 

3.4. Model Training and Evaluation 
A preprocessed dataset and 80-20 split as well as the BPSO-optimized model, which can be fine-tuned by optimizing 

hyperparameters, are required for the model training phase. The accuracy, precision, recall, F1 score, and AUC serve as 

performance metrics, designed for measuring the right prediction and true positive percentages as well as evaluating the 

ability to differentiate between various thresholds. Furthermore, specially designed formulas are used to return those 

metrics [12-15]. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑭𝑵 + 𝑻𝑵
 

 

𝑆𝑒𝑛𝑠𝑒𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 

 

𝑭 − 𝒔𝒄𝒐𝒓𝒆 =
𝟐 × 𝑹𝒆𝒄𝒂𝒍𝒍 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

𝑹𝒆𝒄𝒂𝒍𝒍 + 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏
 

  

𝑨𝑼𝑪 = 𝟏/𝟐 (
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
+

𝑻𝑵

𝑻𝑵 + 𝑭𝑷
) 

 

3.5. Simulation Environment 

Python is used to do experiments, and libraries, particularly Scikit-learn, NumPy, and Pandas, are also applied to 

implementing models and manipulating data, as well as evaluating the outcomes. The outcomes are examined to reveal the 

most effective model, featuring the best liver disease classification.  

3.6 The proposed framework  

Several ML approaches are integrated with Binary Particle Swarm Optimization (BPSO) in the introduced liver disease 

classification model for selecting features and fine-tuning hyperparameters. When selecting the most significant features 

and the most consistent set of parameters, this integrated approach tries to upscale the classification accuracy and also 

reduce the model complications. The model is structured, especially for prediction performance enhancement and liver 

disease detection robustness. Figure 6 shows the proposed approach. 

 

Fig. 6. The proposed framework. 

(4) 

(2) 

(3) 

(5) 

(1) 
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4. RESULTS AND DISCUSSION 

This section examined the performance of six machine learning models developed for liver disease classification prior to 

and following the implementation phase of the Binary Particle Swarm Optimization (BPSO) proposed for the purpose of 

feature selection and hyperparameter fine-tuning. The examined models were particularly Random Forest (RF), Support 

Vector Machine (SVM), Dummy Classifier (DC), Extra Trees Classifier (ET), K-Nearest Neighbors (KNN), and Logistic 

Regression (LR). The performance metrics essentially include accuracy, precision, recall, F1 score, and ROC-AUC, 

being measured and analyzed for highlighting the most effective liver disease classification model. 

Table 3 displays the performance of the ML models before BPSO hyperparameters tunning. 

TABLE III. THE PERFORMANCE OF THE SUGGESTED ML MODELS BEFORE BPSO. 

Model Accuracy Precision Recall F1 Score AUC 

Extra Trees Classifier 0.7982 0.6364 0.4828 0.549 0.758 

Random Forest 0.7456 0.5 0.3793 0.4314 0.7365 

Support Vector Machine (SVM) 0.7456 1 0 0 0.7014 

Dummy Classifier 0.7456 1 0 0 0.5 

K-Nearest Neighbors (KNN) 0.6579 0.3611 0.4483 0.4 0.6398 

Logistic Regression 0.7105 0.3889 0.2414 0.2979 0.7399 

The outcomes revealed the significant role of BPSO in supporting feature selection and hyperparameter optimization as 

well as improving the performance of most models examined, such as the Extra Trees Classifier. The accuracy of ET 

upscaled from 79.82% to 85%, indicating the high effectiveness of the introduced liver disease classification model. 

Furthermore, the optimized performance metrics indicated the vital role of BPSO in mitigating feature redundancy and 

then supporting more accurate and effective classification.  

The analysis also highlighted that the Dummy Classifier lacks powerful predictive features, though it is considered an 

appropriate baseline. On the contrary, models, particularly RF and ET, are significantly affected by optimization, indicating 

how pivotally the model tuning impacts the medical diagnostics.  

Figure 7 displays the confusion matrices of the suggested ML models. 

  

 
 

Fig. 7. confusion matrices of the suggested ML models. 
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Figure 8 displays the AUC of the suggested models. 

 

  

  
Fig. 8. The AUC of the suggested ML models. 

 

After ET hyperparameter optimization, the accuracy enhanced with 85%. Table 4 displays BPSO hyperparameter 

configuration. 
TABLE IV. PARAMETERS FOR ET OPTIMIZATION WITH BPSO. 

 
Algorithm Parameter Values 

BPSO W [0.5, 0.7] 

Particles 45 

Iterations 100 

 

5. CONCLUSIONS AND FUTURE WORK 
This study introduced an optimized liver disease classification ML model and proposed Binary Particle Swarm 

Optimization (BPSO) for selecting features and fine-tuning hyperparameters. Furthermore, the study highlighted the 

significance of BPSO, improving the model performance. Along with the Extra Trees Classifier, it could also achieve a 

high accuracy of 85% and surpass the precision, recall, and F1 score outcomes of other models. Enhanced classification 

accuracy and reduced features indicated the effectiveness of the introduced approach, managing those complicated medical 

datasets, including liver patient records. 

The study indicated how effectively ML models, along with optimization approaches, can develop reliable and non-invasive 

diagnostic techniques for liver disease. The introduced model could provide an effective classification system meant for 

informed and timely decision-making, eventually demonstrating improved outcomes. This paper demonstrated the 

effectiveness of optimized ML techniques in supporting early disease detection and maintaining efforts in medical 

diagnosis. Future studies will widely assess the model’s generalizability on larger, more diverse datasets extracted from 

various geographical regions and provide solutions to the class imbalance through applying techniques either oversampling 

or synthetic data generation. The future research will also study composite learning methods for the purpose of further 

classification performance enhancement. Furthermore, the real-time applications will be performed to evaluate the 

practicability in clinical setups. Additionally, other optimization approaches, particularly Genetic Algorithms or 

Differential Evolution, will be studied for proposing improvements in feature selection and hyperparameter fine-tuning. It 

is expected that future research will significantly focus on incorporating the optimized model along with deep learning 

methods for managing dataset complications. 
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