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A B S T R A C T  
 

Wetlands are essential ecosystems that provide ecological, hydrological, and economic benefits. 
However, human activities and climate change are degrading their health and jeopardizing their long-
term sustainability. To address these challenges, the Internet of Wetland Things (IoWT) has emerged as 
an innovative framework integrating advanced sensing, data collection, and communication technologies 
to monitor and manage wetland ecosystems. Despite its potential, the IoWT faces substantial security 
and privacy risks, compromising its effectiveness and hindering adoption. This survey explores 
integrating machine learning (ML) and deep learning (DL) techniques as solutions to address the security 
threats, vulnerabilities, and challenges inherent in IoWT ecosystems. The survey examines findings from 
231 sources, encompassing peer-reviewed journal articles, conference papers, books, book chapters, and 
websites published between 2020 and 2025. It consolidates insights from prominent platforms such as 
the Springer Nature, Emerald Insight, ACM Digital Library, Frontiers, Wiley Online Library, SAGE, 
Taylor & Francis, IGI Global, Springer, ScienceDirect, MDPI, IEEE Xplore Digital Library, and Google 
Scholar. Machine learning and DL methods have proven highly effective in detecting adversarial attacks, 
identifying anomalies, recognizing intrusions, and uncovering man-in-the-middle attacks, which are 
crucial in securing systems. These techniques also focus on detecting phishing, malware, and DoS/DDoS 
attacks and identifying insider and advanced persistent threats. They help detect botnet attacks and 
counteract jamming and spoofing efforts, ensuring comprehensive protection against a wide range of 
cyber threats. The survey examines case studies and the unique requirements and constraints of IoWT 
systems, such as limited energy resources, diverse sensor networks, and the need for real-time data 
processing. It also proposes future directions, such as developing lightweight, energy-efficient algorithms 
that operate effectively within the constrained environments typical of IoWT applications. Integrating 
ML and DL methods strengthens IoWT security while protecting and preserving wetlands through 
intelligent and resilient systems. These findings offer researchers and practitioners valuable insights into 
the current state of IoWT security, helping them drive and shape future advancements in the field.  

 
1. INTRODUCTION 

A wetland ecosystem supports a diverse array of vegetation, animals, and microorganisms that interact to create a complex 
and interconnected biodiversity system. This environment's species and biological populations depend on one another to 
sustain a stable ecological balance [1]. Wetlands can be natural or artificial, temporary or long-term, and include swamps, 
peatlands, and soil rich in organic matter from decaying plants. They also encompass natural or semi-natural areas that 
experience periodic flooding or remain covered by shallow water, supporting hydrophytic vegetation during the growing 
season [2-5]. Wetlands, also known as the “kidneys of the Earth” [2], are one of Earth’s three major ecosystems and 
encompass a diverse range of types, including mangroves, swamps, fens, deltas, bogs, tidal wetlands, peatlands, floodplains, 
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lagoons, marshes, and inland valleys. Wetlands, including coastal wetlands, riverine wetlands, lakes, reservoirs, and oxbow 
lakes [5], differ based on region, climate, topography, and terrain. These ecosystems feature unique water depths, hydric 
soils, and wetland-adapted plants and animals. They are crucial in providing essential ecosystem functions and services [3-
8].  

Wetlands, covering about 6% of the global land surface, thrive in coastal flats, river estuaries, and permafrost regions at 
higher latitudes. These ecosystems support approximately 40% of the world’s species and store 35% of terrestrial carbon, 
making them vital for biodiversity and climate regulation [10]. They help maintain ecological balance by regulating the 
hydrological cycle, conserving soil, and purifying water by filtering sediments and removing pollutants. Wetlands enhance 
water security, sequester carbon, and facilitate nutrient cycling. They also help mitigate climate change and lessen the impact 
of natural disasters like floods by absorbing excess water and stabilizing ecosystems. Additionally, they provide recreational 
opportunities, preserve cultural heritage, and serve as key sites for research and education, contributing to both environmental 
stability and economic development [10-19]. 

Human activities severely threaten wetlands despite their vital ecological functions. Urbanization, agriculture, construction, 
pollution, overfishing, resource overexploitation, sea reclamation, aquaculture, and dredging have caused extensive habitat 
loss, degradation, and fragmentation. Invasive species, climate change, industrialization, and human disturbances further 
accelerate biodiversity loss [1][5][8][10-13], increase flooding, alter hydrological cycles, and degrade ecosystems. These 
pressures significantly weaken wetlands' essential services [11][20]. Since 1970, global wetland areas have declined by 
approximately 35% [10][11][21][22], and between 1700 and 2020, over half of the wetlands in regions like the United States, 
Europe, Central Asia, India, China, Japan, and Southeast Asia have disappeared [13]. The United States, China, India, Russia, 
and Indonesia account for more than 40% of this global loss, intensifying ecological crises and increasing natural disasters 
[2][13]. This alarming decline highlights the urgent need for strong and sustained efforts to protect and restore wetlands 
worldwide. 

The IoWT has surfaced as a revolutionary framework, integrating IoT technologies with wetland monitoring systems to 
enable real-time data collection, processing, and analysis. IoWT continuously tracks key environmental parameters, 
including water quality, biodiversity, and climate effects, using sensors, actuators, smart devices, and communication 
technologies. These systems measure essential indicators such as soil moisture, electrical conductivity, redox potential, 
salinity, pH, turbidity, temperature, and nutrient levels, providing critical insights into wetland ecosystems [23-25]. IoWT 
ensures seamless data transmission and enhances decision-making for effective wetland conservation and management by 
organizing data acquisition, communication, and computation into interconnected layers [26]. 

Despite its potential, the IoWT faces significant security challenges and vulnerabilities. Threats such as data breaches, 
unauthorized access, malware attacks, man-in-the-middle (MitM) attacks, device hijacking, botnets, and distributed denial-
of-service (DDoS) attacks jeopardize the system’s integrity. Other issues include weak authentication, poor encryption, 
outdated firmware, resource constraints, and a lack of standardization, particularly given the use of resource-limited sensors 
and deployment in harsh environments [27-51]. These vulnerabilities can lead to data loss, system downtime, and delayed 
decision-making, ultimately undermining wetland conservation efforts. 

To address these challenges, secure and reliable communication is crucial for protecting sensitive ecological data. 
Unauthorized access, data manipulation, or tampering can severely impact IoWT’s effectiveness. Machine learning and DL 
techniques have shown remarkable potential in mitigating these risks. Techniques such as decision trees (DT), random forests 
(RF), support vector machines (SVM), k-nearest neighbors (KNN), naïve Bayes (NB), logistic regression (LR), k-means 
clustering, principal component analysis (PCA), and gradient boosting can analyze IoWT network data to detect patterns and 
anomalies [52]. These methods effectively identify malware, detect intrusion attempts, analyze network traffic, and counter 
threats like DDoS attacks and insider breaches [22][52-60]. Deep learning models such as artificial neural network (ANN), 
convolutional neural network (CNN), recurrent neural network (RNN), restricted Boltzmann machine (RBM), generative 
adversarial network (GAN), long short-term memory (LSTM), recursive neural network (RvNN), deep neural network 
(DNN), deep belief network (DBN), graph neural network (GNN), feed-forward neural network (FFNN), deep reinforcement 
learning (DRL), dense neural networks, stacked autoencoders (SAE), and deep autoencoder analyze environmental data in 
the IoWT to identify and detect complex spatial and temporal patterns, effectively classify risks of breaches, identify 
malware, detect phishing and fraud, and analyze network traffic [44][52]. GANs generate synthetic attack data that augment 
real datasets, enhancing the training of resilient defense models. CNNs detect intrusions, mainly DDoS attacks, while deep 
autoencoders are employed to identify anomalies in sensor data from IoWT devices. Additionally, reinforcement learning 
(RL) is integrated into IoWT systems to develop adaptive defense mechanisms against DDoS and insider threats. ML 
techniques are applied in cybersecurity for anomaly detection, malware classification, threat intelligence analysis, and 
defense against adversarial attacks [57][58][61-65]. By leveraging their ability to detect patterns, predict anomalies, and 
provide adaptive responses, ML and DL methods enhance the resilience and robustness of IoWT systems [66][67]. These 
technologies strengthen data security and optimize resource allocation and decision-making processes, fostering the 
sustainable management of wetlands. This study is motivated by the increasing application of the IoWT to monitor and 
manage wetland ecosystems for biodiversity, water purification, and climate regulation. Despite their benefits, IoWT devices 
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face significant security threats, vulnerabilities, and challenges due to resource constraints, diverse architectures, and 
exposure to cyber threats.  

This survey explores the role of ML and DL approaches in securing IoWT systems, focusing on safeguarding sensitive data 
and mitigating cyber threats unique to wetland IoT networks. It reviews existing methods, highlights their applications, 
identifies research gaps, and proposes future directions to enhance IoWT frameworks. Previous research has applied ML and 
DL techniques to improve the security of IoT systems in agriculture and environmental monitoring [68]. However, limited 
attention has been given to their specific application in securing the IoWT. This study addresses this gap by offering the first 
comprehensive analysis of ML and DL methods for securing IoWT systems.  

The survey makes the following contributions: 

• It presents the state-of-the-art advancements in IoWT, focusing on wetland ecosystems, their evolution, 

components, features, benefits, and applications. 

• It describes the key security threats, vulnerabilities, and challenges within IoWT ecosystems. 

• It explains the applications of ML and DL methods for improving IoWT security with relevant case studies and 

examples. 

• It examines the benefits of ML and DL methods for IoWT security. 

• It compares ML and DL techniques in IoWT security. 

• It states the challenges in applying ML and DL methods to IoWT security. 

• It identifies potential areas for future research and development.  

The survey structure is as follows: Section 2 details the materials and methods used, while Section 3 reviews the state-of-
the-art in IoWT. Section 4 identifies security threats, vulnerabilities, and challenges in IoWT systems, and Section 5 
examines how ML and DL techniques can improve IoWT security. Section 6 highlights the challenges of applying these 
methods to IoWT security, and Section 7 explores future research directions. Finally, the survey concludes in Section 8. 

 

2. MATERIALS AND METHODS 

This survey on securing the IoWT using ML and DL methods takes a comprehensive approach to collecting, evaluating, 
analyzing, and organizing the relevant literature. The aim is to ensure thorough coverage of existing research, allowing for 
a structured examination of key findings, challenges, and advancements in the field. The survey assesses existing studies, 
identifies research gaps, and synthesizes findings related to IoWT security. It is organized around essential themes, such as 
the IoWT framework, associated security threats and challenges, and the application of ML and DL techniques to address 
these challenges. The researchers used a structured methodology to identify key research questions. They then established 
explicit inclusion and exclusion criteria to ensure they selected the most relevant studies for their investigation. They 
systematically analyzed the gathered literature, which included journal articles, conference proceedings, book chapters, and 
websites. Relevant keywords were used to search across various academic databases and digital libraries, such as Springer 
Nature, Emerald Insight, ACM Digital Library, Frontiers, Wiley Online Library, SAGE, Taylor & Francis, IGI Global, 
Springer, ScienceDirect, MDPI, IEEE Xplore Digital Library, and Google Scholar. The researchers chose these digital 
libraries because they comprehensively cover peer-reviewed journal articles, conferences, books, book chapters, and 
websites. These sources are well-suited for capturing the latest research on various topics. The literature search specifically 
focused on studies published between 2020 and 2025. The primary areas of interest included wetland ecosystems, the 
components and features of the IoWT, and the security threats and challenges associated with IoWT. Additionally, the search 
explored the application of ML and DL techniques in enhancing the security of IoWT. 

The literature search employed a combination of keywords, such as “Internet of Wetland Things” OR “IoWT,” “Machine 
Learning for IoWT security” OR “ML for IoWT security,” “Deep Learning for IoT security” OR “DL for IoWT security,” 
and “wetland-specific IoWT challenges” OR “IoWT security” AND “future trends” OR “research directions.” Using AND 
and OR Boolean operators helped refine and broaden the search results as necessary. Additionally, the researchers manually 
identified other relevant references from the bibliographies of selected papers. 

To ensure the quality and relevance of the literature, the researchers applied specific inclusion and exclusion criteria to focus 
their analysis on studies related to securing IoWT using ML and DL. These criteria allowed them to filter the large volume 
of data and retain only the most pertinent studies for the survey. Table 1 summarizes the specific inclusion and exclusion 
criteria for selecting research papers. 
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TABLE I.  SUMMARY OF THE INCLUSION AND EXCLUSION CRITERIA FOR CHOOSING RELEVANT RESEARCH PAPERS FOR THE SURVEY. 

 

S/No Inclusion Criteria Exclusion Criteria 

1 

Research studies focused on the security of IoT systems, 

particularly in wetlands or similar environmental monitoring 
systems. 

Research studies focus solely on general IoT security and do not 

specifically relate to wetlands or environmental applications. 

2 

Research papers that employ ML or DL techniques to address 

security threats, vulnerabilities, and challenges, such as anomaly 
detection or intrusion detection in IoWT networks. 

Research papers that do not apply ML or DL techniques to the 

security domain of IoWT. 

3 

Researchers included peer-reviewed articles, conference papers, 

books, book chapters, and websites published in reputable journals 

and conferences. 

Research studies that are not peer-reviewed or lack scientific rigor, 
such as blogs or non-academic sources. 

4 
Research studies that provide empirical results, methodologies, or 

frameworks relevant to IoWT security. 

Studies that do not provide any practical insights, solutions, or 

methodologies for securing IoWT systems. 

5 
Research published within the past five years, i.e., 1st January 

2020 to 31st January 2025, to ensure up-to-date findings. 

Research papers that are not written in English unless a translated 

version is available for review. 

 

Two researchers independently retrieved relevant materials from selected research databases using predefined key 
information, such as the title, authors, and publication year, along with objectives, research questions, study design, methods 
of analysis, results, and conclusions. They also extracted data related to the IoWT, including IoWT security, vulnerabilities 
in IoWT systems, the role of ML and DL in IoWT security, specific ML and DL methods used for IoWT security, and 
comparisons between ML and DL approaches. In addition, the authors reviewed the challenges and limitations associated 
with IoWT security. 

The data extraction process followed a structured approach to ensure consistency and accuracy. Initially, over 3,210 
publications were identified through academic search engines and databases. After removing duplicates and screening 
abstracts, the dataset was narrowed to 1,320 publications. Further eligibility assessments reduced the number to 923, and 
ultimately, 231 publications met the inclusion criteria for the study. These 231 publications came from various sources, 
including thirteen from Springer Nature, one from Emerald Insight, two from ACM Digital Library, five from Frontiers, ten 
from Wiley Online Library, one from SAGE, two from Taylor & Francis, two from IGI Global, twenty-one from Springer, 
thirty-one from ScienceDirect, fifty-one from MDPI, fifty-three from IEEE Xplore Digital Library, and thirty-nine from 
Google Scholar. 

The researchers thoroughly evaluated, categorized, and assessed the relevance of these publications to the study objectives. 
Fig. 1 shows the distribution of selected publications across the different digital libraries. 

 

 

Fig. 1. Illustrates the distribution of selected research publications across digital libraries. 



 

 

21 Ali et al, Mesopotamian Journal of Computer Science Vol. (2025), 2025, 17–63 

Fig. 2 summarizes the distribution of selected papers across digital libraries based on the paper type.  

 

Fig. 2. Summarizes the distribution of selected papers across digital libraries based on the paper type. 

Fig. 3 shows the distribution of selected papers across digital libraries, organized by publication year.  

 

Fig. 3. Shows the distribution of selected papers by digital libraries based on the year of publications. 

The research team selected studies based on several key factors, including timeliness, citations, references, relevance, 
methodological rigor, coherence, validity, dependability, peer-review status, and the credibility of sources. The researchers 
considered potential biases and confounding variables during the study to guarantee the reliability and validity of their 
findings. The team conducted database queries, documented all references, and created a dedicated reference database. They 
used a reference management tool to remove duplicates and ensure accurate citations. 
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The team followed a multi-step process to narrow the list of research papers, including keyword analysis, screening titles 
and abstracts, and performing full-text assessments. They recorded the primary reasons for rejection and eliminated studies 
that did not meet the eligibility criteria. The final selection of papers was organized into a database for further evaluation. 

The researchers employed qualitative synthesis and thematic analysis techniques to analyze the material. They validated 
their findings by consulting subject-matter experts, comparing results with prior research, and carefully evaluating the 
conclusions’ validity. Only high-quality studies were included in the final selection, assessed using a grading system that 
evaluated the robustness of methodology, the reliability of findings, and the contribution to the field of IoWT security using 
ML and DL methods. While ethical approval was unnecessary since the study relied on previously published research, the 
team ensured proper citation of all sources. 

The paper acknowledges several potential limitations. First, it may have overlooked relevant studies excluded from the 
chosen databases. Second, the study recognizes the possibility of publication bias, where studies with favorable results are 
more likely to be published. Third, the review might not fully cover all ML and DL methodologies applied to IoWT. Fourth, 
the lack of quantitative analysis or empirical evidence may limit the robustness of the review, as qualitative assessments 
alone might not fully support the claims. Fifth, the review may prioritize theoretical applications over practical 
implementation issues, such as cost, scalability, and user approval. Finally, the rapid evolution of IoWT, ML, and DL 
techniques will likely outpace the existing literature, making it increasingly difficult to keep up with the latest advancements. 

  

3. STATE-OF-THE-ART 

The state-of-the-art covers the dynamics of wetland ecosystems, the advancement of the IoWT, and the key components and 
features that define it. It highlights the numerous benefits IoWT offers and explores its diverse applications across various 
fields. 

3.1. Wetland ecosystems 

Wetlands are water-saturated environments that promote the growth of diverse plants and animals, providing a range of 
ecological services. These dynamic ecosystems, including marshes, swamps, bogs, and fens, are defined by soil that is 
temporarily or permanently saturated with water, supporting the growth of hydrophytic vegetation [69]. Wetlands naturally 
filter water by trapping sediments, nutrients, and pollutants, improving water quality. They absorb excess rainwater and slow 
runoff, acting as buffers during floods while storing carbon and reducing greenhouse gas emissions to help regulate the 
climate. Wetlands support thriving biodiversity by providing food, breeding grounds, and shelter for many species of fish, 
birds, amphibians, and invertebrates. At the same time, their vegetation sustains complex food webs and adds to habitat 
diversity. 

Agriculture, urbanization, and industrial development threaten wetlands through practices such as drainage, pollution, and 
land conversion for economic gain, leading to their loss and degradation. Conservation efforts work to restore these 
ecosystems, protect their biodiversity, and raise awareness about their ecological importance. By preserving wetlands, we 
enable them to continue providing essential services like purifying water, controlling floods, and regulating the climate. 
Wetland ecosystems support the environment and human well-being, highlighting the importance of sustainable management 
and proactive conservation efforts. These habitats offer water filtration, carbon sequestration, and biodiversity support, 
directly benefiting communities and ecosystems around the globe. 

The rise of the IoWT is transforming environmental monitoring and conservation by leveraging IoT technologies for real-
time data collection and analysis in wetland ecosystems. Sensors and devices track water quality, biodiversity, soil 
conditions, and climate patterns, providing valuable insights that drive conservation strategies and support sustainable 
wetland management. Advancements in wireless communication, data analytics, and cloud computing enhance the IoWT 
ecosystem, enabling quicker, more informed decision-making. These tools facilitate timely interventions to address climate 
change impacts on wetland habitats, ensuring their protection and long-term sustainability. Fig. 4 illustrates the seamless 
integration of nature and technology in a tranquil wetland environment. 

3.2. Evolution of the IoWT 

The IoWT emerged from the broader IoT movement, which gained momentum in the early 2000s. Initially, IoT focused on 
connecting physical devices, sensors, and actuators to the Internet to enable real-time monitoring, data collection, and 
automation across various industries [71][72]. IoT technology integration into resource management and environmental 
conservation has been fueled by the increasing need for effective and scalable solutions to monitor delicate ecosystems like 
wetlands. The development of IoWT has followed a series of distinct evolutionary phases. 

3.2.1. Early beginnings of manual monitoring and basic sensors 

Before the IoWT, wetland monitoring relied on manual methods and essential tools, including standalone sensors for 
measuring water levels, temperature, and soil moisture. In the 1990s, efforts to automate monitoring led to the development 
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of simple sensor networks that could record environmental parameters. However, these systems required significant labor, 
were prone to human error, and struggled to provide continuous or large-scale data. Additionally, they lacked connectivity 
and the ability to transmit data instantly. 

 

Fig. 4. Shows the conceptual illustration of the IoWT, which blends nature and technology in a serene wetland ecosystem [70]. 

3.2.2. The emergence of wireless sensor networks (WSNs) 

Researchers and engineers revolutionized wetland monitoring in the late 1990s and early 2000s by developing wireless 
sensor networks (WSNs). These networks allowed multiple sensors to communicate wirelessly and transmit data across vast 
wetland areas. This innovation improved data coverage and minimized the need for manual intervention. However, early 
WSNs faced challenges such as high energy consumption, limited processing power, and vulnerability to environmental 
disturbances, which limited their scalability and effectiveness in dynamic ecosystems like wetlands. 

3.2.3. Integration of IoT Technologies 

Around 2010, the integration of WSNs with IoT technologies transformed wetland monitoring and management, giving rise 
to the IoWT. IoT brought advanced communication protocols, cloud computing, and real-time data analytics, which enabled 
seamless sensor integration into unified systems. These systems efficiently collected, analyzed, and visualized data, driving 
the creation of specialized applications for wetland management, such as water quality monitoring, flood prediction, and 
habitat assessment. 

3.2.4. Evolution toward IoWT 

Researchers and conservationists coined the term IoWT to address the unique challenges of wetlands, such as their remote 
locations, fragile ecosystems, and complex hydrological and biological processes. Unlike generic IoT systems, IoWT 
specifically designs solutions incorporating energy-efficient sensors, self-sustaining power sources like solar panels, and 
Low-Power Wide-Area Networks (LPWANs), ensuring the systems are more effective for deployment in wetland 
environments. 

3.2.5. Advances in Edge and Fog Computing 

Edge and fog computing, which emerged in the late 2010s, address latency and energy efficiency issues in IoWT systems. 
By processing data locally or near its source, edge computing reduces the reliance on centralized cloud platforms. This 
approach proves especially beneficial for wetlands in remote areas with limited Internet access, allowing real-time data 
processing without continuous connectivity. Fog computing built on this approach by introducing intermediate layers of 
processing and storage, streamlining data flow between edge devices and the cloud, and further optimizing system 
performance. 
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3.2.6. Incorporation of ML and DL 

Integrating ML and DL techniques into IoWT systems marked a significant advancement, revolutionizing how these 
ecosystems are managed. Wetlands involve complex and non-linear interactions among their physical, chemical, and 
biological components, often rendering traditional data analysis methods insufficient for capturing their intricacies. ML and 
DL algorithms enabled IoWT systems to analyze massive data, identify insights, and generate predictive insights. For 
example, ML models have been used to detect pollution events, assess biodiversity, and predict water quality trends, 
enhancing the decision-making capabilities of wetland managers. 

3.3. Components of IoWT 

The IoWT consists of sensors and actuators, communication networks, data processing units, energy management systems, 
security mechanisms, user interfaces, decision-support systems, and applications and services as its components. Below is a 
brief description of these components. 

3.3.1. Sensors and actuators 

Sensors and actuators are crucial in the IoWT architecture because they acquire and act based on environmental data. These 
devices, such as water quality sensors, collect vital information like pH, turbidity, dissolved oxygen, moisture, temperature, 
and air quality. For instance, piezometers measure groundwater levels, while ultrasonic sensors help track water flow rates. 
Actuators, on the other hand, act upon environmental perceptions to regulate water inflow and outflow, helping to maintain 
a balanced wetland ecosystem. These devices withstand harsh conditions, including exposure to moisture, temperature 
fluctuations, and bio-intrusions, ensuring their durability and reliable performance even in challenging environments [73]. 

3.3.2. Communication networks 

Communication networks facilitate the transfer of information from IoWT sensors to processing units and decision-making 
systems using technologies like LPWAN, ZigBee, and LoRaWAN (Long Range Wide Area Network). These technologies 
ensure connectivity even in hard-to-reach wetland areas. IoWT devices sometimes roam between satellite and cellular 
systems deployed in remote locations to extend coverage. This approach ensures that the communication infrastructure 
remains energy-efficient.  

3.3.3. Data processing units 

IoWT sensors generate large volumes of data, requiring advanced signal-processing techniques to extract valuable insights 
effectively. These methods enable real-time analysis of large data volumes at the source, consuming significant bandwidth 
and causing delays. Cloud computing supports long-term monitoring and data mining, allowing for predictive analysis of 
large datasets. Machine learning and DL techniques identify patterns, anomalies, and trends in the collected data, aiding 
effective wetland management. 

3.3.4. Energy management systems 

In wetland ecosystems, the lack of conventional power sources makes it challenging to access mainstream electricity, 
requiring standalone resources to operate IoWT devices. Solar cells, wind turbines, and microbial fuel cells are commonly 
used power technologies in these environments. Energy and micro power management systems maintain the continuous and 
reliable operation of IoWT components. They manage power distribution and energy storage systems, such as lithium-ion 
batteries, and store excess energy for low-power generation [74]. 

3.3.5. Security mechanisms 

Given the crucial role of wetlands in global ecosystems, protecting IoWT systems from cyber threats is essential. To prevent 
unauthorized access, organizations implement security measures such as encrypting data, authenticating users, and detecting 
intrusions. Additionally, IoWT networks integrate Blockchain technology to ensure database credibility by facilitating secure 
and transparent updates [75]. 

3.3.6. User interfaces and decision-support systems 

Interaction devices serve as interfaces that link human operators with IoWT systems, enabling them to control the systems 
that collect and manage wetland data. These interfaces, typically in the form of web or mobile applications, are designed to 
be user-friendly. Decision support systems (DSS) then utilize the processed data to provide recommendations for conserving, 
restoring, and maintaining wetlands [76]. 

3.3.7. Applications and services 

IoWT systems actively monitor and manage key environmental factors such as species conservation, flood forecasting and 
mitigation, carbon stock estimation, and water purification. These applications contribute to advancing ecological 
conservation, fighting climate change, and moderating the use of natural resources. Fig. 5 shows the main components of 
IoWT. 
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Fig. 5. Shows the main components of IoWT. 

3.4. Features of IoWT 

Table 2 briefly describes the key features of IoWT. 

TABLE II.  BRIEFLY DESCRIBE THE KEY FEATURES OF IOWT. 

 

S/No Key Features Brief Description References 

1 
Sensor-based monitoring and 

data collection 

The IoWT employs wireless sensors to continuously monitor the wetland environment, 
collecting temperature, humidity, water quality, soil pH, and species diversity. This 

integrated sensor system enables precise tracking of wetland ecological changes, allowing 

for proactive management and protection measures. Its architecture and functionality offer 
valuable insights that help inform policy and management decisions regarding climate 

change, human activities, and wetland conservation. 

[77] 

2 Wireless sensing 

LPWAN technology, including protocols such as LoRaWAN, allows IoWT devices to 

communicate efficiently over long distances while consuming minimal power. This 
capability is crucial for wetlands, often in areas with limited transport infrastructure. 

LPWAN enhances the effectiveness and sustainability of IoWT systems by guaranteeing 

reliable data transmission in diverse environmental conditions. 

[78][79] 

3 
Real-time data analytics and 

predictive modeling 

The IoWT enables real-time data processing and analysis, leveraging ML and DL 

algorithms to decode new data streams. This capability allows for the detection of unusual 

occurrences, the prediction of ecological patterns, and the anticipation of threats such as 
floods and degradation of flora and fauna. By providing predictive insights, IoWT 

enhances the ability to implement early and effective conservation interventions, ensuring 

wetlands’ preservation and associated benefits. 

[80] 

4 Scalability and modularity 

IoWT systems are designed for scalability and modularity, allowing them to adapt to the 

size and infrastructure of various wetlands. This flexibility supports adding sensors or 

nodes to the network, enabling easy integration of new components over time. Such an 

approach ensures that IoWT solutions can meet the evolving needs of wetland areas and 
incorporate emerging technologies as they become available. 

[81][82] 

5 
Enhanced security and privacy 

mechanisms 

The IoWT incorporates robust security measures to ensure data protection, recognizing 

the sensitivity of environmental data and the significance of wetlands for ecological 
balance. It employs secure communication protocols that guarantee data authenticity 

while protecting against interception and tampering. To strengthen security further, IoWT 

integrates Blockchain and quantum cryptography technologies, making it resilient to 
modern cyber threats. 

[83] 
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3.5. Benefits of IoWT 

The main benefits of IoWT include the following: 

3.5.1. Enhanced wetland monitoring and management 

The IoWT actively monitors key aspects of wetland ecosystems, such as water quality, soil moisture, acidity/alkalinity, and 
biodiversity, providing real-time data. Linking IoWT devices allows researchers and policymakers to track ecosystem 
degradation over time and take prompt action to address it. In wetland conservation projects, the IoWT systems have proven 
effective in detecting early signs of pollution or changes in water levels, helping to manage issues like flooding and species 
decline [84][85]. 

3.5.2. Improved data-driven decision-making 

The IoWT generates large volumes of accurate streaming data from interconnected sensors, enabling data-driven decision-
making. Advanced data analysis and visualization tools analyze these data, aiding in developing effective wetland 
management plans. For instance, the IoWT has been employed in wetland restoration and management to assess water 
distribution and the subsequent changes in ecosystems, particularly the effects of climate change [86]. 

3.5.3. Real-time anomaly detection 

IoWT systems use ML and DL techniques to detect real-time environmental data anomalies, enabling the prompt 
identification and resolution of risks like data manipulation, access violations, or physical sensor damage. By detecting these 
issues early, IoWT helps mitigate critical impacts on wetland ecosystems, reducing the chance of causing irreversible 
environmental damage [87][88]. 

3.5.4. Scalable and cost-effective ecosystem monitoring 

IoWT systems are highly scalable and perfect for monitoring expansive and diverse wetland ecosystems. Unlike traditional 
direct monitoring methods, which require substantial time, effort, and financial resources, IoWT devices facilitate efficient 
data collection and analysis with minimal human intervention. For instance, deploying IoWT in vast areas like the Okavango 
Delta has streamlined continuous monitoring, which would otherwise demand significant financial, physical, and 
technological effort to carry out manually [89][90]. 

3.5.5. Integration with advanced technologies 

The IoWT can enhance modern technological innovations such as artificial intelligence (AI), Blockchain, and geographical 
information systems (GIS), improving the security, reliability, and accuracy of IoWT systems. For example, Blockchain 
ensures the integrity of IoWT data by preventing alterations. At the same time, GIS allows for real-time tracking of changes 
in ecosystem conditions, offering a detailed view of ecosystem health [91][92]. 

3.5.6. Support for conservation and policy initiatives 

IoWT systems contribute significantly to wetland conservation efforts by providing accurate and valuable data that aids in 
policy formulation, funding allocation, and the evaluation of conservation measures. IoWT data has supported the country’s 
international environmental commitments in Pakistani Ramsar site wetlands. This data enables policymakers to develop 
effective wetland policies, allocate necessary resources, and assess the success of conservation strategies [93][94]. 

3.5.7. Community and stakeholder engagement 

IoWT fosters cooperation between the Institute, environmental agencies, researchers, and local communities by providing 
precise and accessible data to support wetland conservation efforts. Using this data, local populations can engage with their 
governments to advocate for the protection of wetlands. Additionally, the data helps communities understand how industrial 
or agricultural activities in other countries may impact their wetlands, allowing them to respond effectively to these changes 
[95][96]. 

3.6. Applications of IoWT 

The IoWT offers several applications that enhance wildlife monitoring, conservation, disaster management, sustainable 
resource management, scientific research, and ecosystem management. Table 3 below summarizes the key applications of 
IoWT.  
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TABLE III.  SUMMARY OF THE KEY APPLICATIONS OF IOWT. 

 

S/No Applications Brief Description References 

1 
Wetland monitoring and 

conservation 

The IoWT is an innovative architecture that leverages networked sensors to collect real-

time environmental data from wetlands. These devices monitor key features such as water 
quality, temperature, pH levels, and biodiversity, providing scientists and policymakers 

valuable insights into ecological dynamics, pollution sources, and conservation efforts. 

This comprehensive data allows for more informed decision-making and helps predict 
changes like eutrophication or the spread of invasive species, ultimately enhancing the 

protection and stability of wetland ecosystems. 

[97] 

2 
Flood management and early 

warning systems 

The ability of wetlands to retain excess water enhances flood control, a role further 
strengthened by the IoWT through hydrological sensors and predictive algorithms that 

monitor water levels and rain forecasts. These sensors collect data, which ML algorithms 

analyze to predict floods and alert residents in affected areas. This disaster risk reduction 
strategy minimizes property, infrastructure, and life loss while improving wetlands’ flood 

control capacity. 

[98] 

3 
Climate change impact 

assessment 

Wetlands actively contribute to carbon sequestration and climate regulation by absorbing 

carbon compounds like methane and carbon dioxide. IoWT uses DL techniques to analyze 
these emissions’ temporal and spatial variations, helping to understand how climate 

change affects wetland ecosystems and their ability to sequester carbon. This data is 

essential for the international community to tackle climate change and for local regions to 
develop targeted strategies for addressing these environmental issues. 

[99] 

4 
Habitat and biodiversity 

monitoring 

IoWT actively monitors animals and plants in wetland habitats using camera traps, 

acoustic sensors, and ML models to identify species, track their movements, and even 
detect population shifts. This approach helps preserve biodiversity by offering insights 

into the impacts of human activities and natural events on wetlands, enabling early 

intervention to protect endangered species and their habitats. 

[100] 

5 Water resource management 

The IoWT monitors wetland threats by tracking water demand and supply while providing 

treatment solutions to ensure healthy water resource management. Supervised ML 

analyzes data on nitrates, phosphates, and heavy metals to detect contamination, 
supporting water treatment, allocation, and the protection of wetlands. This is crucial in 

preserving wetlands’ ability to provide essential ecosystem services for the environment 

and people. 

[101] 

 

4. SECURITY THREATS, VULNERABILITIES, AND CHALLENGES IN IoWT SYSTEMS 

The IoWT offers an innovative approach to continuously monitoring and managing wetland ecosystems by connecting 

sensors, devices, and networks. By gathering real-time data, IoWT can help protect wetlands and endangered species and 

respond more quickly to natural disasters. However, implementing IoWT in these sensitive ecosystems introduces new 

security threats, vulnerabilities, and challenges that can compromise the system’s efficiency and reliability. Below is a brief 

description of the security threats, vulnerabilities, and challenges IoWT systems encounter.  

4.1. Data breaches and unauthorized access 

Unauthorized access and data breaches pose serious risks to the IoWT, threatening sensitive information, disrupting 

ecological monitoring, and jeopardizing water resource management. Hackers exploit vulnerabilities like weak 

authentication protocols and unpatched software to manipulate water quality data, alter real-time readings, or steal 

information such as water quality measurements and species diversity in wetlands. These breaches facilitate data 

manipulation, theft, and misuse, which can lead to inaccurate environmental decisions and unreliable wetland management, 

ultimately undermining conservation efforts [44][46][47][102]. 

4.2. Data privacy violations and misuse 

Data privacy in the IoWT is crucial for safeguarding the confidentiality and security of environmental data collected through 

connected devices. These sensors monitor water quality, temperature, humidity, wildlife activity, and vegetation growth. 

Sensitive ecological and geographical information is highly susceptible to unauthorized access, which could result in privacy 

breaches and misuse. For example, revealing water quality data from specific wetland locations could expose them to 

pollution risks and make them vulnerable to exploitation for industrial or commercial use [44][46][47][103]. 

4.3. Malware and ransomware attacks 

Malware and ransomware attacks threaten IoWT systems, jeopardizing the effectiveness of ecological monitoring and 

conservation efforts by potentially disrupting their operations. These devices are vulnerable to network exploits and phishing 

attacks, which can give attackers access to broader networks, enable DDoS attacks, or cause devices to malfunction. Malware 

can corrupt data, damage sensor performance, or falsify critical environmental information, undermining wetland 

management. For example, attackers could manipulate water quality monitoring systems, leading to inaccurate reports that 

hinder conservation decisions. Ransomware may lock operators out of vital systems, delaying action until a ransom is paid, 
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as seen in incidents like the Colonial Pipeline attack. In extreme cases, Stuxnet-like malware could target IoWT systems, 

disrupting water flow controls or altering sensor readings, which would endanger biodiversity and ecosystem health 

[44][46][47][51]. 

4.4. Data interception and eavesdropping 

In IoWT networks used for wetland monitoring, unauthorized entities can intercept or eavesdrop on data transmitted between 

devices, posing a significant security threat. These networks, which rely on wireless communication to gather and share 

environmental data, are vulnerable if not adequately secured. Hackers can exploit insecure channels to access sensitive 

information, such as water quality parameters or species locations, compromising data privacy and integrity. For instance, 

unencrypted sensor communications measuring pH, dissolved oxygen, and turbidity may be intercepted and altered to hide 

pollution levels. Additionally, poachers could exploit GPS data from wildlife tracking systems to find endangered species. 

These breaches not only undermine conservation efforts but can also influence policy decisions, stressing the urgent need 

for stronger security measures [44][46][47][50][104]. 

4.5. Distributed denial of service attacks 

DDoS attacks on the IoWT overwhelm devices and networks with excessive traffic, disrupting their ability to process 

legitimate requests. In IoWT systems monitoring wetland ecosystems, these attacks interfere with critical operations and 

hinder data collection, delaying essential actions such as flood alerts and pollution control. The limited computational power 

and network bandwidth of IoWT devices exacerbate the issue. For instance, a DDoS attack on a central server managing 

water quality sensors can block real-time data on parameters like pH, turbidity, or dissolved oxygen, delaying responses to 

environmental threats. In flood monitoring systems, such attacks obstruct data flow during natural disasters, delaying 

emergency responses and putting communities and ecosystems at risk [28][36][44][46][47][105-107]. 

4.6. Device hijacking and botnets 

Malicious actors can hijack connected devices in the IoWT, such as environmental sensors, water quality monitors, or 

cameras, to perform unauthorized tasks. By taking control of these devices, attackers can manipulate or deactivate them, 

leading to distorted data, such as altering water level readings that misguide management decisions. Compromised devices 

may also become part of botnets used in cyberattacks, such as distributing spam or spreading malware. These attacks can 

disrupt environmental monitoring by skewing data, impairing decision-making, and causing severe issues like overwhelming 

servers with traffic, stealing sensitive information, or sabotaging communication, ultimately harming the protection of 

wetland ecosystems [29][44][47][108]. 

4.7. Insider threats 

Insider threats in the IoWT arise when individuals within an organization—such as employees, contractors, or authorized 

users—intentionally or unintentionally compromise the security of connected devices and data. For instance, a wetland 

monitoring technician might alter environmental sensor readings to hide pollution or misreport water quality. At the same 

time, an employee could accidentally expose system credentials or neglect security protocols, causing a breach. Additionally, 

a researcher might unknowingly introduce malware via an infected USB drive, putting the entire network at risk. These 

threats can lead to inaccurate data, loss of trust, environmental damage, and harm to infrastructure [30][44][46][47]. 

4.8. Physical attacks and environmental damage 

Physical attacks and environmental damage pose significant risks to the IoWT, which relies on interconnected devices in 

remote outdoor locations. Attackers can sabotage devices such as sensors or communication equipment, distorting 

environmental data. For instance, destroying a water quality sensor in a wetland can lead to inaccurate ecosystem health 

assessments. Floods, storms, and heat waves can damage or destroy critical hardware, disrupting data collection and 

communication. Floodwaters may submerge sensors, lightning damage electronics, and animals chew cables or nest in 

equipment. These risks undermine the reliability of IoWT data, affecting decision-making and potentially causing long-term 

harm to ecosystems [33][44][109][110]. 

4.9. Insecure communication 

Insecure communication in the IoWT compromises the integrity and confidentiality of environmental data, as IoWT devices 

often operate in remote, vulnerable areas and rely on susceptible wireless protocols like Wi-Fi, Bluetooth, or cellular 

networks. These networks are prone to eavesdropping, MitM attacks, and data tampering. For example, attackers can 

intercept and alter unencrypted data from water quality sensors, such as pH levels or pollutant concentrations, potentially 

misleading decision-makers about ecosystem health and causing false alarms or unnecessary regulatory actions. 

Additionally, attackers may spoof devices to send fraudulent data, disrupt communication with DoS attacks, or gain 

unauthorized access to sensitive environmental information, leading to the exploitation of natural resources [111]. 
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4.10. Scalability and poor key management 

Scalability and poor key management present significant challenges in the IoWT as the number of devices and network 

complexity grows. Managing secure communication for each device through key generation, distribution, and storage as the 

network expands becomes increasingly challenging. Traditional key management systems fail to keep up, creating 

vulnerabilities. For example, improper key management allows attackers to exploit weak or reused keys or outdated 

encryption methods in an IoWT system monitoring a vast wetland with thousands of sensors, cameras, and drones collecting 

data on water quality, soil conditions, and wildlife. This can compromise multiple devices, manipulate sensor data, inject 

false readings, or turn off devices, disrupting ecosystem monitoring. Additionally, scalability issues arise when numerous 

devices need to authenticate or communicate at once, overloading the system and leading to delays, missed data, or service 

outages, ultimately compromising security and system reliability [37][112][113]. 

4.11. Resource constraints 

Resource constraints, such as limited energy, bandwidth, storage, and processing power, directly impact the design of IoWT 

systems. For instance, battery-powered sensors in remote wetland areas face energy limitations, which demand energy-

efficient designs or reliance on intermittent renewable sources like solar power. These limitations compel designers to 

balance security, performance, and cost, often compromising security measures. Bandwidth-intensive data transmission from 

drones and sensors can lead to delays or the need for data compression, reducing real-time observation quality. Edge device 

storage constraints require periodic offloading to central servers, balancing storage capacity with communication costs. The 

processing power of edge devices limits local data analysis, highlighting the need for a combination of local processing and 

cloud-based analytics. These challenges necessitate careful optimization to ensure the system’s performance, reliability, and 

sustainability [35]. According to Jeon et al. [114], IoT devices with constrained resources are particularly vulnerable to 

cyberattacks due to low security. 

4.12. Weak authentication and authorization mechanisms  

Weak authentication and authorization mechanisms in the IoWT expose systems to serious security risks, including 

unauthorized access to sensitive data, device functionality manipulation, and critical environmental monitoring disruption. 

These vulnerabilities often arise from simplistic authentication methods and poor enforcement of authorization controls. For 

instance, wetland sensors may rely on weak default passwords or lack authentication altogether, making it easy for attackers 

to manipulate them. If a water quality sensor has weak authentication, attackers can impersonate it and send false data, 

potentially leading to harmful environmental decisions. Inadequate authorization controls allow unauthorized users to access 

sensitive configurations, as IoWT gateway devices often lack proper role-based access control. This enables intruders to alter 

settings or turn off sensors, compromising data integrity. Similarly, drones used for wetland biodiversity monitoring are 

vulnerable to hijacking if they depend on simple passwords and lack encrypted communication, allowing attackers to alter 

flight plans or steal sensitive species data [27][38][115]. 

4.13. Insufficient data encryption 

Several IoWT systems fail to implement proper encryption, leaving data vulnerable to interception, unauthorized access, and 

tampering, compromising sensitive ecological information's confidentiality and integrity. Data exchanged between sensors, 

gateways, and drones is especially at risk of cyberattacks without encryption. For example, an attacker could intercept and 

alter soil moisture data from a wetland sensor, leading to inaccurate readings that impact resource management. Similarly, 

unencrypted images or GPS coordinates sent by a drone monitoring endangered species could be intercepted, allowing an 

attacker to track its movements, alter its flight path, or disrupt its mission. Additionally, unauthorized users could access and 

corrupt the information without encryption for stored data. This lack of end-to-end encryption significantly increases the risk 

of MitM attacks on data packets [31][116]. 

4.14. Outdated firmware and software 

Outdated firmware and software in IoWT devices, including water quality sensors and wildlife tracking systems, create 

severe security and operational risks. These devices depend on up-to-date software to function securely and effectively, but 

when updates are neglected, attackers can exploit vulnerabilities, leading to data breaches or system failures. For instance, 

outdated sensor firmware can become susceptible to malware, allowing attackers to manipulate water quality data and 

undermine environmental monitoring efforts. Likewise, obsolete software in wildlife tracking devices can cause 

communication failures with other devices, resulting in inaccurate or lost data on animal movement patterns, jeopardizing 

data privacy and wetland conservation efforts [40][117]. 

4.15. Resource constraints 

Resource constraints in the IoWT affect the performance and sustainability of devices used for wetland monitoring, 

especially in remote or off-grid locations. Water quality sensors and wildlife trackers often rely on batteries, which deplete 

quickly, causing data gaps and increasing maintenance costs. Their limited processing power restricts local data analysis, 
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forcing reliance on cloud systems or external infrastructure that may be unavailable in these areas. These devices’ limited 

memory and storage capacity restricts their ability to store large sensor datasets, which undermines the effectiveness of 

environmental monitoring and conservation efforts. These challenges are particularly critical in large-scale IoWT 

deployments, where maintaining security without sacrificing performance is essential [34][49][118][119]. 

4.16. Lack of standardization 

The lack of standardization in the IoWT creates significant challenges for interoperability, data sharing, and scaling wetland 

monitoring systems. Manufacturers often use proprietary protocols, data formats, and communication methods, making it 

challenging to integrate different systems. For instance, one monitoring system might rely on a specific water quality sensor 

with a unique data format, while another uses a different sensor with a distinct protocol. This inconsistency leads to data 

incompatibility, complicating the merging of information from various sources. The absence of standardized formats makes 

comparing and analyzing data from different regions or wetlands difficult, hindering large-scale environmental assessments. 

The lack of common technical standards also raises maintenance and scaling costs, as specialized expertise is needed for 

each device and protocol. Furthermore, the absence of a uniform security framework leads to inconsistent security measures 

across devices and networks, increasing the risk of attacks due to poorly interconnected system elements [120][121]. 

4.17. Limited connectivity in remote wetlands 

Limited connectivity in remote wetlands, such as the Amazon rainforest or the Everglades, presents a significant challenge 

for the IoWT. These areas often lack reliable Internet or network infrastructure, making transmitting real-time data from 

sensors and devices difficult, which hampers timely monitoring and decision-making. While solutions like satellite 

communication or LPWAN, such as LoRaWAN, are sometimes used, they face challenges like high operational costs, 

limited bandwidth, and signal interference from dense vegetation or harsh weather. As a result, connectivity issues slow the 

scalability of wetland monitoring systems and create data gaps, hindering the ability to track environmental changes or 

respond swiftly to ecological threats [122][123]. 

4.18. Data management Complexity 

Data management in the IoWT is complex due to the large volume of data collected, the variety of sensors used, and the 

need for efficient storage, processing, and analysis. Wetland environments require various sensors to monitor parameters 

such as temperature, water quality, humidity, and species movement, generating high-frequency, voluminous data that must 

be processed, cleaned and analyzed instantly. For instance, in the Everglades, sensors tracking water levels, soil moisture, 

and pollution levels produce terabytes of data that must be integrated from multiple sources. The diversity of data types—

numerical, image, and video—adds further complexity, as does ensuring data accuracy and consistency, especially when 

sensors malfunction or connectivity issues arise. Real-time applications such as flood monitoring and wildlife tracking 

require rapid processing, which demands significant computational power and sophisticated algorithms. These systems are 

often complex to deploy in remote areas with limited resources. Data privacy and security concerns, particularly in sensitive 

wetland areas, complicate data management and sharing among stakeholders such as local authorities, environmental groups, 

and researchers [124]. Fig. 6 illustrates the security threats, vulnerabilities, and challenges in IoWT systems. 

 

Fig. 6. Illustrates the security threats, vulnerabilities, and challenges in IoWT systems. 
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5. MACHINE LEARNING AND DEEP LEARNING IN IoWT SECURITY 

5.1. Machine learning 

Machine learning, a rapidly evolving branch of AI, integrates statistics, mathematics, and computer science concepts to 
develop robust algorithms and statistical models. These models analyze large datasets, extract meaningful insights, and 
construct mathematical representations that enable predictions or decision-making without explicit programming 
[44][125][126]. By recognizing patterns and relationships within data, ML algorithms perform classification, regression, 
clustering, and optimization tasks. Through continuous learning and adaptation, these algorithms strive to replicate human 
intelligence by training on vast data [126-129]. In IoWT networks, ML follows three key stages: training, testing, and 
validation. The process begins with collecting raw data divided into training and testing datasets. The ML algorithm learns 
from historical data to build a predictive model during training. In the testing phase, the trained model analyzes and classifies 
new data to assess its accuracy. Finally, the validation phase fine-tunes the model by incorporating additional data or refining 
features to enhance performance. Once trained, the IoWT system can efficiently execute specific tasks based on real-time or 
previously unseen data. Machine learning techniques are classified into supervised, unsupervised, semi-supervised, and 
reinforcement learning, while learning strategies include centralized, federated, and transfer learning [125-129]. 

▪ Supervised learning 

Supervised learning uses labeled datasets to teach algorithms the relationship between inputs and outputs [44][52][126]. In 
IoWT, data is labeled before training or historical data is utilized. During training, the model compares its predictions with 
actual results from the dataset, learning and improving its accuracy over time. Supervised learning is divided into 
classification and regression algorithms: classification predicts discrete category labels, while regression predicts continuous 
numerical values. Popular supervised learning algorithms, such as Bayesian networks (BN), LR, DT, RF, SVM, and neural 
networks (NNs), are commonly used in IoWT network security [125-130]. Cybersecurity experts apply these algorithms to 
classify threats, detect intrusions, identify spam, and recognize malware. 

▪ Unsupervised learning 

Unsupervised learning algorithms analyze data without relying on predefined labels, allowing them to uncover hidden 
patterns or detect anomalies, such as in IoWT. Unsupervised learning algorithms are practical for identifying structures and 
relationships within data, making them particularly useful for tasks like clustering and anomaly detection [52][126]. These 
methods are employed when training data lacks annotations or classifications, with clustering being a popular approach [44]. 
Unsupervised learning algorithms are categorized into six types: hierarchical learning, data clustering, latent variable models, 
dimensionality reduction, and anomaly detection. In the IoWT, researchers often use algorithms like K-means, RBM, 
autoencoders, GANs, PCA, and RNNs for tasks such as exploratory data analysis, clustering, feature extraction, and 
dimensionality reduction [126][128][130]. These algorithms are especially beneficial for anomaly detection and network 
traffic analysis within the IoWT network. 

▪ Semi-supervised learning 

It uses labeled and unlabeled data to improve model training, which is especially useful when labeled data is limited but 
unlabeled data is abundant [126]. By leveraging both data types, semi-supervised learning enhances accuracy and efficiency, 
bridging the gap between supervised and unsupervised learning. Popular algorithms, such as generative models, graph-based 
models, mixture models, entropy minimization, and semi-supervised SVM, help create more accurate models while reducing 
the need for extensive human labeling. In the IoWT context, these algorithms are crucial in detecting threats and classifying 
malware in new domains [44][126][128]. 

▪ Reinforcement learning 

Reinforcement learning involves agents actively interacting with their environment to make decisions through trial and error, 
guided by feedback as rewards or penalties [44][52][125][126]. This approach allows agents to learn from their actions and 
improve performance. Rather than relying on predefined datasets, agents gain knowledge through real-time experience, 
which enables them to adapt to new situations and challenges. RL techniques, such as Q-learning, State-Action-Reward-
State-Action (SARSA), and Deep Q-Network (DQN), improve decision-making processes in various domains, including 
cybersecurity, where they help identify and address emerging threats [126][128][130]. Reinforcement learning provides a 
dynamic and adaptive approach to cybersecurity by enabling systems to learn from feedback and respond effectively to 
emerging threats. Trained RL agents can monitor network traffic, detect suspicious activity instantly, and take immediate 
actions such as blocking or quarantining potential attacks [126]. RL also strengthens password policies and enhances the 
security of IoT devices. In IoWT cybersecurity, RL algorithms optimize automated incident response and penetration testing, 
improving defensive strategies. While challenges remain, RL has the potential to revolutionize cybersecurity by creating 
agile and flexible systems that quickly identify and mitigate threats, ultimately safeguarding critical infrastructure [52]. 
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5.1.1. Machine Learning Algorithms  

Machine learning strengthens cybersecurity by leveraging algorithms to detect threats, predict attacks, and address 
vulnerabilities. In IoWT security, ML algorithms identify anomalies, recognize patterns, and respond to potential risks 
instantly. 

• Decision trees 

A DT is a supervised ML algorithm for classification and regression that recursively splits data based on feature values to 
form a tree-like structure. Decision trees make decisions at internal nodes using criteria like Gini impurity for classification 
or mean squared error for regression, with branches representing possible outcomes and leaf nodes containing predictions 
[131][132]. Their interpretability makes them valuable for transparent decision-making, though they risk overfitting, which 
can be addressed by pruning or ensemble methods like RF. DTs efficiently process numerical and categorical data with 
minimal pre-processing, making them ideal for applications like malware detection, intrusion detection, spam recognition, 
and vulnerability assessment [52]. However, imbalanced datasets can bias results, necessitating careful data handling. In the 
IoWT, DTs analyze real-time sensor data—such as water quality, temperature, humidity, and wildlife activity—to detect 
anomalies and potential threats. By identifying sudden environmental changes, DTs trigger automated responses like 
activating backup systems, alerting authorities, or shutting down devices, enhancing security, minimizing human error, and 
ensuring timely threat mitigation. 

• Random forest 

Random forest is a powerful and flexible ML algorithm that enhances classification and regression tasks by constructing 
multiple DTs. It improves accuracy and reduces overfitting using bootstrapping, randomly selecting data subsets and features 
to train diverse trees. For classification, RF predicts based on majority voting, while for regression, it averages predictions. 
This method effectively handles numerical and categorical data, identifies key features, and excels in noisy environments 
[131][133]. In cybersecurity, RF strengthens detection systems by identifying phishing websites, spam emails, and suspicious 
activities [134]. Within the IoWT, RF improves security by analyzing sensor data and communication patterns to detect 
anomalies and malicious activity. Reinforcement learning further enhances IoWT security by enabling adaptive defense 
strategies against threats like DDoS attacks and insider breaches. For instance, RL optimizes network routing and resource 
allocation in wetland flood management, ensuring uninterrupted data flow and efficient ecosystem management. It also helps 
control water levels and energy consumption in artificial retention systems. RF-based models, such as those developed by 
Attou et al. [54], detect unauthorized access in IoWT networks by analyzing long-term sensor data, water quality, and 
network traffic patterns. These models identify unusual activities, such as brute-force attacks or unauthorized connections, 
reducing false alarms and improving threat detection. 

• Support vector machines 

Support vector machines are supervised ML algorithms used for classification and regression tasks. They determine the 
optimal hyperplane that separates data points from different classes by maximizing the margin between the hyperplane and 
the nearest support vectors [131]. When data is not linearly separable, SVMs apply the kernel trick to map it into higher-
dimensional spaces for better separation [135]. These algorithms efficiently manage linear and non-linear relationships, excel 
in high-dimensional spaces, and resist overfitting. However, they may face challenges with large datasets unless feature 
selection is applied. SVMs are used in intrusion detection, malware identification, fraud detection, and email security, where 
they classify malicious activities by distinguishing normal behavior from abnormal patterns [52] [52][133][134]. In the 
IoWT, SVMs enhance security by detecting anomalies, classifying device behavior, and identifying patterns that indicate 
unauthorized access or malfunctioning devices. Wetland monitoring systems use sensors to collect vast amounts of 
environmental data, which may contain legitimate patterns and security threats. By analyzing benign and malicious software 
behaviors, SVMs accurately label collected data, ensuring the integrity and reliability of wetland monitoring efforts while 
preventing compromised devices from disrupting critical operations. 

• K-Nearest Neighbors 

K-nearest neighbors is a straightforward and intuitive supervised machine learning algorithm primarily used for 
classification, but it can also be applied to regression. It classifies new data points by comparing them to existing points in 
the training set, assuming that similar objects are close together. KNN calculates distances using metrics like Euclidean 
distance and assigns a class based on the majority vote of the ‘k’ nearest neighbors. Regression predicts outcomes by 
averaging the values of the nearest points. As a non-parametric and lazy learning method, KNN does not assume any data 
distribution and skips a training phase, making it computationally intensive since it must calculate distances for each 
prediction. Selecting an appropriate ‘k’ value is crucial; a small ‘k’ increases sensitivity to noise, while a large ‘K’ can 
obscure essential patterns [131][133]. In the IoWT, KNN enhances security by analyzing sensor data to detect anomalies. 
Sensors monitor environmental factors like water quality and temperature, and KNN classifies deviations as usual or 
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potentially hazardous [134]. If new readings significantly differ from historical trends, the system flags them as potential 
threats, helping detect environmental damage or intrusions and ensuring wetland protection.  

• Naive Bayes 

Naïve Bayes is a supervised learning algorithm that leverages Bayes’ theorem, assuming feature independence to reduce 
computational costs and simplify classification tasks. It computes the likelihood of each class based on input features and 
selects the class with the highest probability, making it efficient and fast with minimal data requirements. NB works well for 
binary and multi-class problems, even when features are irrelevant, and is widely used in text classification tasks like spam 
filtering. Gaussian Naïve Bayes, which assumes features follow a Gaussian distribution, provides accurate results in text 
categorization [52][131][132]. NB is crucial in cybersecurity, enabling quick identification of threats such as harmful emails 
and attacks in IoWT systems, where it classifies sensor data to detect anomalies like unauthorized access or sensor tampering 
[52][134]. By training on labeled data, NB predicts potential threats and enhances security by continuously monitoring and 
classifying incoming sensor data, enabling timely responses to mitigate risks. In projects like wetland restoration using IoWT, 
NB models have helped predict phishing attacks and allowed proactive measures like encryption and access control. 

• Logistic Regression 

Logistic regression is a supervised ML algorithm commonly used for binary classification tasks. It predicts outcomes by 
calculating probabilities using the logistic function, transforming a linear combination of input features into values between 
0 and 1. LR classifies predictions into two categories by applying a threshold, typically 0.5. The model uses gradient descent 
to lessen the error by adjusting its parameters, ensuring the predicted probabilities align closely with the actual labels. While 
LR assumes a linear relationship between input features and the log odds of an outcome, limiting its effectiveness in complex 
scenarios, it remains a simple, interpretable, and efficient algorithm. It excels in tasks like phishing email detection and 
anomaly prediction in the IoWT, where it processes large datasets to detect and mitigate unauthorized access or data 
manipulation.  

• K-Means 

K-Means is a clustering algorithm that organizes data points into separate groups based on their characteristics. It randomly 
selects K initial centroids, where K is the number of desired clusters. Each data point is assigned to the nearest centroid using 
a metric like Euclidean distance. The centroids are then updated by calculating the mean of the points in each cluster, and 
this process repeats until the centroids stabilize or a set number of iterations is reached. K-Means is valuable in customer 
segmentation, image compression, and anomaly detection tasks. In the context of the IoWT, it aids in security by detecting 
unusual patterns in sensor data and supporting activities like threat detection, incident response, malware analysis, and real-
time monitoring, allowing security teams to identify potential threats early and ensure the safety and sustainability of wetland 
ecosystems. 

• Principal Component Analysis 

Principal component analysis is a powerful dimensionality reduction technique used to simplify the analysis of large datasets 
by identifying and focusing on the directions of maximum variance. In the context of IoWT security, PCA helps streamline 
the processing of environmental data from sensors like moisture, temperature, and air quality by reducing unnecessary 
complexity while retaining key information, which makes it easier to detect security anomalies, such as sensor tampering or 
unauthorized access, by highlighting unusual patterns or outliers. In addition to anomaly detection, PCA aids in processing 
vast amounts of network data for IDS, accelerates malware analysis by identifying irregularities in file statistics, and 
enhances threat detection efficiency without sacrificing accuracy. In IoWT systems, PCA, along with clustering techniques, 
helps detect emerging threats in wetland ecosystems, such as pollution or sensor malfunctions, enabling early intervention 
and improved security [60]. 

• Gradient boosting  

Gradient boosting is a robust ML algorithm that builds an ensemble of decision trees, each correcting the errors of the 
previous one to improve accuracy. Gradient descent iteratively minimizes a loss function by adjusting the model step by step 
until it meets a stopping criterion, such as a set number of trees or a small error. While excessive trees or a high learning rate 
can cause overfitting, techniques like shrinkage and tree depth control help prevent this. Implementations like XGBoost, 
LightGBM, and CatBoost enhance cybersecurity by improving threat detection in phishing, malware, and intrusions [52]. 
These models rapidly analyze large datasets, identify malicious activity, refine classification, detect anomalies, predict 
attacks, and adapt to emerging cyber threats. In IoWT systems, gradient boosting strengthens security by detecting unusual 
sensor data patterns, aiding in anomaly detection, intrusion prevention, and predictive maintenance. It also protects data 
transmission by identifying and rejecting spoofed packets, ensuring the integrity of environmental monitoring data, such as 
species richness and pollutant levels [59][136]. 

• Federated learning 
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Federated learning is a distributed ML approach that enables devices or organizations to train a shared model while keeping 
their data local collaboratively. Instead of transferring raw data to a central server, participants share only model updates, 
such as gradients or weights, which enhances security by protecting sensitive environmental data like water quality or 
biodiversity. FL improves real-time threat detection by allowing sensors to analyze local data for anomalies and share model 
updates, which helps identify threats like poaching or contamination. It also strengthens resilience against cyberattacks, such 
as data poisoning and DoS, by eliminating centralized data storage and enabling collaborative anomaly detection across 
devices in diverse ecosystems. FL supports cross-site collaboration for wetland conservation, allowing different 
organizations to create shared models while ensuring privacy and complying with regulations. Furthermore, integrating FL 
with Blockchain ensures the integrity of model updates, preventing tampering and enabling transparent auditing to reinforce 
trust in ecological conservation efforts. 

5.2. Deep Learning 

Deep learning, a subfield of ML, develops algorithms by modeling NNs inspired by the human brain. These networks use 
layers of interconnected nodes, or neurons, to process input data, detect intricate patterns, and generate predictions [137]. 
Deep learning automates feature extraction from raw data, removing the need for manual feature engineering [138]. It handles 
large datasets across computer vision, speech recognition, natural language processing (NLP), autonomous driving, and 
cybersecurity. As the networks grow more profound, they can learn more intricate features, enabling tasks such as image 
recognition, language translation, and speech processing. The rise of DL can be attributed to its ability to improve 
performance with the availability of more data and computational power. The rapid advancement of GPUs has significantly 
sped up the training process of large models, enhancing the effectiveness and accessibility of DL. Industries such as AI, 
healthcare, and autonomous vehicles have embraced DL to address complex, data-intensive challenges. As models process 
more data through multiple layers of computation, they refine their predictions, resulting in higher accuracy and making DL 
a valuable tool for real-world problem-solving. 

Deep learning operates through ANNs with input, hidden, and output layers, processing data through interconnected nodes 
that extract hierarchical features. Techniques like CNNs, RNNs, and GANs have significantly impacted computer vision, 
medical diagnosis, NLP, and cybersecurity. In the IoT and IoWT, DL addresses challenges like anomaly detection and 
system security, improving efficiency and accuracy across applications like fault diagnosis and intrusion detection 
[128][139]. In cybersecurity, DL has transformed traditional security systems. While conventional IDS struggle with 
evolving cyber threats, DL-based IDS can analyze real-time network traffic, identify anomalies, and detect intrusions more 
effectively [140]. DL enhances malware and fraud detection by focusing on behavioral patterns rather than static code or 
predefined rules [141]. It can recognize malicious activity based on its actions and detect fraudulent transactions by 
identifying suspicious patterns within massive datasets. With its ability to model complex relationships, DL excels in 
anomaly detection, predictive maintenance, and fraud prevention, though challenges like dataset requirements and false-
positive rates persist [44][52]. 

5.2.1. Deep Learning Algorithms  

The most well-known NN and DL models include the following. 

o Artificial Neural Network 

Neural networks are pivotal in replicating human brain operations through interconnected neurons in layers. While not a DL 
model, the ANN is the foundation for DL models. By transmitting signals between neurons—organized in input, hidden, and 
output layers—ANNs aim to replicate brain-like learning processes. Neurons process inputs using weights and biases and, 
through techniques like backpropagation, refine the network’s output. Training data subsets allow ANNs to save time and 
memory, which is crucial in cybersecurity applications. NNs are employed in various security contexts, such as spam 
detection, malware identification, phishing prevention, and identifying advanced threats like zero-day attacks and DDoS. 
Despite their efficiency, ANNs face hardware dependence, complex structures, and vulnerability to adversarial attacks [52]. 
In the IoWT context, NNs significantly enhance environmental security and monitoring. They detect anomalies in key 
ecological metrics, such as water quality and temperature, helping identify pollution or illegal activity [52]. Neural networks 
evaluate the behavior of IoT devices to identify threats such as unauthorized access or tampering. They also integrate data 
from sensors and drones, providing a detailed and holistic view of the ecosystem’s health. They employ predictive analytics 
to anticipate risks such as flooding or drought and optimize IoT energy use for sustainable wetland management. NNs are 
vital in safeguarding wetland ecosystems and advancing conservation efforts through these capabilities. 

o Convolutional Neural Network 

Convolutional neural networks are powerful DL models used extensively in image analysis, pattern recognition, and 
intrusion detection tasks. Convolutional, pooling, and fully connected layers collaborate to extract and process features from 
structured grid data, such as images and sequences. The convolutional layers apply filters to detect patterns such as edges or 
textures, while pooling layers reduce the spatial dimensions, improving efficiency and preventing overfitting [132]. Fully 
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connected layers process the high-level features for classification or regression tasks, enabling CNNs to manage complex 
data effectively. This combination makes them ideal for network intrusion detection, image classification, and IoT security 
applications [142]. In network security, CNNs detect intrusions and analyze network traffic. They identify patterns in packet 
data through convolutional layers and use pooling layers to consolidate essential features, helping to differentiate between 
benign and malicious traffic. Fully connected layers then classify the traffic based on these features, while activation 
functions like ReLU introduce non-linearity to learn complex patterns better. CNNs can adapt to emerging threats by 
retraining with updated data, reducing false positives and negatives, and providing reliable real-time threat detection 
[141][143]. In IoT security, CNNs also detect visual threats, sensor anomalies, and potential risks, analyzing large datasets 
from IoT sensors and predicting security breaches, thereby enhancing system protection [52][135][140][144]. 

o Recurrent Neural Network 

Recurrent neural networks process sequential data using loops that enable information to be carried over time. RNNs excel 
at tasks where data order is crucial, such as time-series forecasting, NLP, and speech recognition. They power applications 
like language translation, image captioning, and cybersecurity, playing a key role in detecting fraud, malware, phishing, and 
DDoS attacks [52]. Advanced models like LSTMs address challenges like the vanishing gradient problem, improving their 
ability to handle complex tasks in dynamic environments [141]. In IoWT systems, RNNs—especially LSTMs—detect 
anomalies and patterns in sensor time-series data, identifying sudden environmental changes that signal device malfunctions, 
manipulation, or cyber threats. They enhance predictive maintenance, recognize unusual traffic patterns that indicate 
cyberattacks, and ensure data integrity. By analyzing historical performance data, RNNs predict device failures, reducing 
downtime and security risks. Their ability to learn from past events helps forecast security threats, strengthening the safety 
and effectiveness of IoWT deployments in sensitive ecosystems. 

o Restricted Boltzmann Machine 

A Restricted Boltzmann Machine is a generative NN used for unsupervised learning, which captures the probability 
distribution of input data by training on samples. With their two-layer architecture of visible and hidden layers, RBMs excel 
in dimensionality reduction, feature learning, and classification by effectively modeling complex data distributions. These 
fully connected networks, which lack intra-layer connections, enable RBMs to identify intricate patterns, making them 
valuable for anomaly detection, malware identification, DDoS detection, and spam filtering [52]. In IoWT applications, 
RBMs enhance security by analyzing sensor data from wetland monitoring devices that measure temperature, humidity, and 
pollutants. By detecting anomalies, they can identify equipment malfunctions or illegal activities like poaching, triggering 
alerts for unusual environmental changes. RBMs also strengthen data encryption to protect sensitive information during 
transmission and optimize resource management by analyzing energy usage and balancing computational loads. 
Additionally, FL enables IoWT devices to share models securely, preserving data privacy while fostering a robust and secure 
network. 

o Generative Adversarial Network 

Generative adversarial networks consist of two NNs—the generator and the discriminator—that work in opposition. The 
generator creates synthetic data, such as images, designed to mimic actual data, while the discriminator’s job is to distinguish 
between authentic and generated data. Through iterative training, the generator improves its output to make it more realistic, 
and the discriminator gets better at detecting fakes. This process continues until the generated data resembles the actual data 
[141]. GANs are widely applied in image generation, NLP, time-series synthesis, and cybersecurity, excelling in tasks like 
pose estimation, malware classification, intrusion detection, DDoS attack detection, spam filtering, and anomaly detection 
[52]. In the IoWT, GANs enhance security by generating synthetic attack data to improve anomaly detection, intrusion 
detection, and system testing. By simulating cyberattacks, GANs help security models become more accurate and resilient. 
For example, they can generate synthetic sensor data that mimic environmental conditions, aiding in identifying pollution, 
illegal activities, or tampered sensors [62]. GANs also help ensure data privacy and integrity by creating synthetic datasets 
that preserve statistical properties while protecting sensitive information. Furthermore, they help detect deepfakes, 
guaranteeing the authenticity of sensor readings and environmental data, which is crucial for improving the security and 
efficiency of IoWT systems. 

o Long Short-Term Memory 

LSTM networks excel in sequence prediction tasks by effectively capturing long-range dependencies and addressing the 
vanishing gradient problem that limits traditional RNNs [140]. Their architecture, which includes memory cells and gating 
mechanisms, allows them to store and manage information over extended periods, making them ideal for analyzing 
sequential data like network traffic [144]. In cybersecurity, LSTMs excel at detecting anomalies, identifying malicious 
activities, and recognizing temporal patterns in network behavior. They use input, forget, and output gates to manage the 
flow of information, allowing them to retain critical past data, integrate new information, and make precise predictions 
[145][146]. This functionality is widely applied in NLP, speech recognition, and anomaly detection [141]. LSTM has been 
utilized in various cybersecurity applications, including malware detection, intrusion detection, anomaly detection, DDoS 
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detection, APT detection, and spam identification [52][135]. In the context of the IoWT, LSTMs are valuable for monitoring 
and securing sensor networks. They detect anomalies like unusual water quality or temperature fluctuations, which could 
signal potential attacks or malfunctions. By training LSTM models on historical data, predictions of environmental changes 
like flooding or pollution spikes can be made, allowing for proactive measures. LSTMs also monitor traffic patterns and 
detect suspicious activity, such as denial-of-service attacks or tampering. Their ability to recognize deviations from normal 
behavior helps identify intrusion attempts and ensures the security of IoWT systems by distinguishing legitimate requests 
from potential threats. 

o Recursive Neural Network 

Recursive neural networks are ideal for addressing security challenges in the IoWT by effectively processing and analyzing 
hierarchical or tree-like structures in sensor data. Their ability to understand sequential and spatial patterns allows RvNNs 
to detect anomalies such as unauthorized access, abnormal data transmissions, and unusual environmental changes. RvNNs 
enhance IoWT security by leveraging hierarchical data relationships to detect threats and system malfunctions, effectively 
classifying behaviors as normal or suspicious. They identify attacks such as DoS, data injection, and eavesdropping while 
analyzing complex network interactions to strengthen security [52]. By facilitating real-time decision-making, RvNNs 
optimize security measures, automate responses, and alert operators to potential breaches. These networks improve threat 
detection, minimize false positives, and adapt to seasonal patterns and geographical variations. Continuously learning from 
new data, RvNNs ensure security models remain robust and responsive to emerging threats, protecting the ecosystem from 
cascading risks. 

o Deep Neural Network 

Deep neural networks are advanced ANN with multiple layers, including input, hidden, and output layers. Deep neural 
networks effectively learn complex patterns and data representations by modeling hierarchical and non-linear relationships. 
They achieve this through learned weights and activation functions, which enable them to process and transform data at 
multiple levels of abstraction. They effectively handle high-dimensional data, making them valuable for image recognition, 
NLP, and intrusion detection. In cybersecurity, DNNs detect cyberattacks, malware, spam, and DDoS attacks, though they 
struggle with novel threats that differ significantly from known patterns [52]. Their application requires extensive training 
data, substantial computational power, and careful hyperparameter tuning, while challenges like overfitting and lack of 
explainability complicate deployment in sensitive fields [143]. In the IoWT, DNNs are crucial in real-time monitoring and 
security by detecting anomalies in IoT sensor data, ensuring accurate water level and pollution tracking, and identifying 
sensor malfunctions or cyber threats. They enhance data integrity, secure transmission, and predictive maintenance while 
optimizing real-time threat detection and access control. By safeguarding IoWT systems against cyber threats and 
environmental risks, DNNs strengthen technological security and environmental protection. 

o Deep Belief Network 

Deep belief networks are multi-layered ANNs that utilize RBMs for unsupervised learning. These generative models focus 
on learning data distributions by extracting features and reducing dimensionality. DBNs play a crucial role in cybersecurity 
by detecting intrusions, identifying malware, preventing fraud, and filtering spam. However, their deployment in sensitive 
environments requires caution due to high computational demands, the need for large datasets, and susceptibility to advanced 
cyberattacks. In the IoWT, DBNs enhance security by detecting anomalies that signal sensor tampering or unauthorized 
access and learning standard environmental data patterns to identify threats. They improve data privacy by generating secure 
representations and protecting sensitive information during transmission. Additionally, DBNs strengthen malware detection 
and network intrusion prevention by analyzing IoT communication patterns. DBNs efficiently filter and prioritize sensor 
data by predicting device failures, optimizing resource allocation, ensuring reliable IoWT operations, and improving 
monitoring system efficiency. 

o Graph neural network 

Graph neural networks are powerful tools in ML for analyzing graph-structured data, where entities are represented as nodes 
and their relationships as edges. GNNs enhance tasks like node classification, link prediction, and graph classification by 
iteratively combining node features with those of neighboring nodes. This process creates enriched embeddings that capture 
local and global structural contexts [135]. In the IoWT context, GNNs improve network security by analyzing traffic patterns 
and identifying anomalies, such as unusual communication behaviors or compromised devices. Through message passing, 
GNNs detect potential threats like MitM attacks, eavesdropping, and privacy breaches while ensuring robustness against 
data manipulation. Additionally, GNNs address critical challenges in IoWT, including sensor spoofing and maintaining 
network resilience in dynamic environments. GNNs can detect immediate and long-term anomalies by modeling spatial-
temporal interactions, bolstering IDS. They also support FL frameworks, enabling secure, localized data analysis while 
detecting collaborative threats. In harsh environments where devices frequently join or leave the network, GNNs help 
optimize resource allocation and predict potential communication failures, ensuring the network adapts to changes. This 
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decentralized approach enables IoWT devices to collectively enhance security, improving the overall resilience of the 
network and maintaining effective operation in remote and challenging environments. 

o Feed-forward neural network 

Feed-forward neural networks are essential tools in ML, processing information by directing data through layers in a one-
way flow from the input to the output layer. In hidden layers, these networks use activation functions like ReLU, Sigmoid, 
or Tanh to perform complex computations. Weighted links connect neurons in a neural network, and each neuron has a bias 
that helps adjust the output. During training, the network adjusts these weights and biases to minimize prediction errors, 
improving its accuracy over time [140]. FNNs play a crucial role in IoWT networks by enhancing security and data integrity. 
They detect and mitigate security threats such as unauthorized access, cyber-attacks, and data tampering by analyzing 
network traffic and sensor behavior. FNNs also identify anomalies to ensure sensor data integrity, preventing the influence 
of faulty or manipulated sensors. They monitor incoming sensor data, compare it with environmental models to spot 
alterations, and verify data before it enters the network, ensuring that only trustworthy information impacts decision-making. 
Additionally, FNNs support predictive maintenance, access control, network traffic optimization, and encryption, forecasting 
sensor failures, optimizing traffic flow, and improving privacy through strong encryption protocols that secure sensitive data 
and communications. 

o Stacked Autoencoders 

A stacked autoencoder is a DL model consisting of multiple layers of autoencoders arranged hierarchically to learn complex 
features from input data. Each autoencoder compresses the data into a latent representation through its encoder and 
reconstructs it via the decoder. Each layer’s output acts as the input for the next, allowing the network to identify more 
complex and abstract patterns progressively. This structure benefits unsupervised feature learning, dimensionality reduction, 
and initializing DNN. Stacked autoencoders excel at tasks like anomaly detection, data denoising, and generative modeling, 
as they can handle non-linear relationships, work with unlabeled data, and learn hierarchical features. They have proven 
effective in various cybersecurity applications, including malware detection, intrusion detection, spam filtering, DDoS 
mitigation, fraud detection, and phishing identification [52]. In IoWT systems, stacked autoencoders are effective for 
anomaly detection by identifying unusual patterns in sensor data, such as changes in water quality or unauthorized access 
attempts [63][64]. Researchers use them to monitor wetland systems, ensuring reliable data by detecting sensor anomalies 
and preventing data falsification. The models also improve classification performance by extracting relevant features. In 
IoWT security, stacked autoencoders enhance defense mechanisms by detecting deviations in standard sensor data, 
compressing data to protect against unauthorized access, and analyzing network traffic to identify potential intrusions. Their 
ability to detect abnormal behavior strengthens network security and ensures data integrity. 

o Deep autoencoder 

Deep autoencoders are NNs with multiple hidden layers designed to learn hierarchical representations of data. They work 
by compressing input data into a lower-dimensional form and then reconstructing it to match the original input, minimizing 
the reconstruction error. This process helps extract significant features from the data, making them effective in tasks such as 
dimensionality reduction, data compression, and anomaly detection. By using metrics like L2-norm or Euclidean distance, 
deep autoencoders optimize their performance to capture complex patterns and structures in the data, making them 
particularly adept at identifying anomalies by flagging deviations in reconstruction errors [140]. In IoWT environments, 
deep autoencoders effectively detect sensor data anomalies. They learn patterns from standard operational data and identify 
unusual fluctuations, such as tampered sensor readings or suspicious network traffic indicative of intrusions like spoofing or 
DoS attacks. Their ability to validate data integrity by reconstructing sensor inputs is invaluable for detecting inconsistencies. 
Blockchain technology and autoencoders work to ensure secure and immutable records of detected anomalies. These 
networks also enhance energy efficiency and security in resource-constrained environments by minimizing computational 
loads, making them ideal for edge devices. Cyber-physical systems can model and monitor physical behaviors, helping detect 
deviations that might indicate environmental changes or sabotage, ensuring robust security and efficient resource 
management. 

o Ensemble and hybrid deep learning 

Ensemble DL algorithms combine multiple models to enhance performance by leveraging their diversity. Ensemble DL 
methods combine the predictions of several base models, each with unique capabilities, to increase accuracy, robustness, and 
generalization. In IDS, ensemble DL approaches enhance threat detection by combining the intelligence of different models, 
making them more effective at identifying threats in complex environments like IoT networks with diverse attack patterns 
[140]. Hybrid DL algorithms, which integrate traditional ML methods with DL techniques, leverage the efficiency of 
conventional ML and the ability of DL to capture complex patterns. These hybrid models boost accuracy and robustness, 
particularly for analyzing network traffic anomalies, detecting suspicious behaviors in IoT and IoWT devices, and securing 
communications within these networks. They also support anomaly detection, fault diagnosis, and adaptive encryption, 
ensuring systems can respond to evolving security risks. By merging multiple methodologies, hybrid models strengthen the 
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overall security and reliability of IoWT systems, especially under challenging conditions such as noisy data or unreliable 
signals. 

5.3. Application of ML and DL in IoWT Security 

The use of ML and DL in cybersecurity for IoWT is a growing field that integrates cutting-edge technology to improve the 
security and efficiency of wetland operations. Below is a brief description of the primary areas where ML and DL are applied 
in cybersecurity for IoWT: 

5.3.1. Adversarial attack detection 

Adversarial attack detection in the IoWT focuses on identifying and mitigating security threats, targeting the interconnected 
devices and systems that monitor water quality, temperature, humidity, and biodiversity in wetland ecosystems. The 
increasing integration of IoT technology in these ecosystems introduces vulnerabilities that adversaries can exploit to 
manipulate system operations or distort environmental data. Adversarial attacks target the integrity, availability, and 
confidentiality of IoWT systems through false data injection, DoS attacks, data poisoning, eavesdropping, MitM attacks, 
replay attacks, and side-channel exploits. While traditional security measures rely on cryptographic techniques, ML and DL 
offer a more adaptive approach by analyzing historical sensor data to detect deviations from normal device behavior. These 
learning-based methods enhance cybersecurity by identifying unusual activities that may indicate an attack, making them 
valuable tools for adversarial attack detection in IoWT systems. Some notable applications of ML and DL techniques in 
Adversarial attack detection include. Imtiaz et al. [147] proposed the Explainable IoT (XIoT) model that revolutionizes IoT 
security by combining spectrogram-based CNNs and Explainable AI to detect complex cyber threats with exceptional 
accuracy (99.34%, 99.61%, and 99.21% on benchmark datasets). It instantly processes large-scale IoT data streams, 
leveraging high-speed optical networks to ensure scalability and efficiency. Chowdhury et al. [148] evaluated the 
effectiveness of ML models in detecting and mitigating adversarial attacks in cybersecurity. Using a diverse dataset, CNN 
and RF outperformed SVM and LSTM, achieving accuracy rates of 98.3% and 97.6%, respectively, with high precision, 
recall, and F1 scores. The findings emphasize the robustness of these models in identifying malicious activities and highlight 
the importance of resilient defense mechanisms in combating modern cyber threats. Deshmukh and Ravulakollu [149] 
proposed a DL framework optimized for detecting and classifying cyberattacks in IoT environments using an enhanced CNN 
variant called Intelligent Intrusion Detection Network (IIDNet). Through dimensionality reduction, hyperparameter tuning, 
and feature engineering, IIDNet achieves 95.47% accuracy on the UNSW-NB15 dataset while reducing training time and 
enhancing scalability. The Learning-Based Intelligent Intrusion Detection (LBIID) algorithm further improves detection 
performance by optimizing layers and architectural design. Taşcı [150] presented an optimized 1D CNN model for 
classifying IoT security data, leveraging convolutional, self-attention, and Gaussian Error Linear Unit (GELU) activation 
functions with dropout and normalization to prevent overfitting. Tested on CIC IoT 2023, CIC-MalMem-2022, and CIC-
IDS2017 datasets, the model achieved exceptional results, including up to 99.99% accuracy and precision, demonstrating its 
effectiveness in detecting IoT-related attacks and malware. Becerra-Suarez et al. [151] evaluated DL models for classifying 
cybersecurity attacks in IoT networks using the CICIoT2023 dataset. It compares DNN, LSTM, and CNN architectures, with 
CNN outperforming the others in accuracy and efficiency, achieving 99.10% accuracy for multiclass and 99.40% for binary 
classification. The findings highlight the importance of data standardization and hyperparameter selection, positioning CNN 
as a promising model for IoT network security. El-Sofany et al. [152] proposed an ML-based security model to address the 
increasing security challenges in IoT environments autonomously. Using seven ML algorithms, the model achieves 99.9% 
accuracy, 99.8% detection rate, and a perfect AUC score, outperforming previous models in execution speed and accuracy. 
The study highlights the model’s potential to enhance IoT security by analyzing network traffic, updating threat knowledge, 
and detecting new attacks, with future improvements possible through expanding the dataset. Parra-Jiménez et al. [153] 
proposed using CNN and RNN to enhance IoT security by detecting abnormal traffic patterns. The approach achieves 99% 
accuracy in binary attack classification and 96% in multiclass attack recognition, outperforming existing solutions. These 
results show the potential of ML for securing IoT infrastructures. Jullian et al. [146] proposed a distributed DL framework 
to prevent various vulnerabilities within the same protection system. It evaluates FFNN and LSTM models using the NSL-
KDD and BoT-IoT datasets to identify multiple cyber-attacks. The results show that the framework effectively detects 
various attacks, achieving up to 99.95% accuracy. 

5.3.2. Anomaly detection 

Anomaly detection identifies behaviors that deviate from regular activity, which may signal an ongoing attack [154][155]. 
Anomaly detection in the IoWT involves monitoring, detecting, and analyzing data from interconnected wetland sensors to 
identify unusual patterns or events. These sensors collect temperature, humidity, soil moisture, water quality, and wildlife 
movement data. Detecting anomalies such as pollution, invasive species, or extreme weather is vital for mitigating 
environmental harm. Security anomalies in IoWT can disrupt services, including unauthorized access, data tampering, DoS 
attacks, malware, eavesdropping, physical attacks on devices, botnet attacks, spoofing, and insider threats [154]. Traditional 
anomaly detection methods heavily rely on data size, structure, and features [50]. Introducing ML methods (like supervised 
and unsupervised learning, RL), time-series analysis using Autoregressive Integrated Moving Average (ARIMA) and LSTM 
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networks, and hybrid approaches combining statistical, ML, and DL models is paramount in detecting anomalies in the IoWT 
ecosystems. Machine learning models, trained on historical data, identify deviations by learning “normal” behavior patterns 
[154]. They detect both short-term and long-term anomalies. For example, anomaly detection algorithms actively identify 
unusual network traffic patterns, signaling potential DDoS attacks [52]. Machine learning-driven anomaly detection 
algorithms like k-means, Gaussian mixture models, and Isolation Forests effectively identify outliers in network traffic, 
system logs, and user activity. These models continuously adapt to new system behaviors, enhancing detection accuracy. 
Deep learning methods, such as autoencoders and LSTM networks, reconstruct standard patterns and flag deviations in 
network traffic or time-series data as anomalies [155]. This process enhances system accuracy and minimizes false positives. 
Several researchers have recommended implementing ML and DL approaches for detecting anomalies in the IoT network, 
including the following. Ness et al. [156] investigated various ML models for detecting anomalies in network traffic, focusing 
on challenges like class imbalance and feature complexity. LightGBM and SVM achieved the highest test accuracy (0.85), 
while XGBoost (0.83) and RF (0.82) also performed well. Naive Bayes demonstrated substantial accuracy (0.81), while 
Isolation Forest struggled with generalization (0.4). The study highlights how combining these models in an ensemble can 
enhance detection capabilities by leveraging their strengths. Ayad et al. [157] introduced a lightweight detection model that 
enhances IoT security by addressing high-dimensional data. The model combines an asymmetric stacked autoencoder for 
dimensionality reduction with a DNN trained using a one-class approach. The proposed model outperforms state-of-the-art 
methods using the BoT-IoT dataset, achieving a detection rate of 96.27% in just 0.27 seconds. It also reaches 99.99% 
accuracy, 99.21% precision, and a 97.69% F1 score. These impressive results highlight the model’s effectiveness and 
potential for real-world IoT security applications. Simon et al. [158] proposed SVM with an autoencoder to detect network 
traffic anomalies, enhancing network security and reliability. The autoencoder identifies deviations by learning standard 
traffic patterns, enabling rapid threat detection and reducing downtime. The approach outperforms existing techniques, 
offering a proactive threat identification and network protection solution. Rajendran et al. [159] investigated cybersecurity 
threat detection using DL and anomaly detection, focusing on CNNs and RNNs. The study demonstrates that the RNN 
outperforms the CNN, achieving 96% accuracy compared to 93%. The integrated framework effectively identifies and 
mitigates various cyber threats, offering a proactive and adaptable solution for modern cybersecurity challenges. Mohammed 
and Talib [160] used anomaly detection algorithms like one-class SVM (OCSVM), k-means clustering, and autoencoders to 
identify unknown attacks in IoT-IDS by learning normal system behavior and flagging deviations as anomalies. OCSVM 
identifies anomalies by learning a boundary around regular instances, k-means detects outliers by clustering data, and 
autoencoders flag anomalies based on high reconstruction errors. Kolhar and Aldossary [161] present a DL-based IDS to 
secure intelligent vertical networks in IoT applications. The system utilizes a stacking deep ensemble model to achieve 
99.8% detection accuracy on the ToN-IoT dataset. It also attains 99.6% accuracy on the InSDN dataset. It combines deep 
learning with other security measures to address vulnerabilities, improve privacy through data anonymization, and maintain 
real-time performance in IoT environments. 

5.3.3. Intrusion detection 

Intrusion detection in the IoWT identifies and mitigates unauthorized access, cyber threats, and malicious activities to ensure 
data integrity, confidentiality, and system availability. Wetland ecosystems depend on interconnected sensors to monitor 
environmental conditions, but deploying IoT devices in remote, unprotected areas increases their vulnerability to 
cyberattacks. Intrusion detection systems proactively safeguard these networks by detecting threats such as unauthorized 
access, DoS attacks, MitM attacks, malware, ransomware, data tampering, and spoofing. Conventional IDS techniques, 
including signature-based, anomaly-based, behavioral-based, hybrid approaches, edge computing, and real-time monitoring, 
help counter these risks. However, IoWT faces challenges maintaining data integrity due to anomalies, and traditional 
signature-based methods struggle with emerging threats. Machine learning enhances IDS by enabling systems to learn from 
data and detect novel attacks. Supervised, unsupervised, and DL techniques—such as DT, SVMs, CNNs, and GANs—
improve intrusion detection by identifying sophisticated threats and generating adversarial examples to test system resilience 
[155]. By leveraging computational intelligence, ML and DL enhance IDS efficiency, enabling accurate anomaly detection 
with minimal human intervention [44]. Several research studies have successfully applied ML and DL techniques to detect 
intrusions in IoT networks. Dash et al. [134] proposed DL techniques for IDS to combat network intrusions, but most models 
still face high false alarm rates. Deep learning, especially LSTM networks, has proven effective in improving intrusion 
detection. The Salp Swarm Algorithm (SSA)-optimized LSTM model demonstrates superior classification accuracy, reduced 
false alarms, and enhanced performance for real-time intrusion detection applications. Ahmed et al. [162] explored using 
ML and DL models, such as SVM, RF, LSTM, and ANN, to improve network intrusion detection. It demonstrates that these 
models can effectively classify network traffic, with RF achieving the highest accuracy at 99.5%. The research highlights 
the importance of tuning models and adapting to evolving threats to enhance network security in real-time applications. 
Jyothi et al. [163] developed an IDS for Industrial IoT networks using ML and DL techniques. They employed Singular 
Value Decomposition (SVD) for feature engineering and Synthetic Minority Over-sampling Technique (SMOTE) to address 
class imbalance. Their model, tested on the ToN_IoT dataset, achieved 99.98% accuracy, a 0.016% error rate for multiclass 
classification, and a 0.001% reduction in binary classification error. Du et al. [164] introduced MobileNet Convolution and 
Vision Transformer (MBConv-ViT). This transformer-based IoT intrusion detection model fuses local and global features 
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to enhance feature correlation and precisely classify attack traffic. Leveraging the high correlation in traffic flow, the model 
achieved superior accuracy of 97.14% on TON-IoT and 99.99% on Bot-IoT datasets, outperforming existing methods. The 
results highlight MBConv-ViT’s effectiveness in extracting comprehensive spatial features and improving network data 
analysis. Maaz et al. [165] developed the CNN-GRU and CNN-LSTM hybrid DL models to detect IoT attacks like DDoS, 
injection, and backdoor vulnerabilities. They tested these models on the Kitsune and TON-IoT datasets, achieving 99.6% 
accuracy on Kitsune and 99% on TON-IoT. Their models demonstrated robust performance, scalability, and efficiency in 
identifying malicious activities, ensuring strong protection for IoT ecosystems. Al-Quayed et al. [166] developed a predictive 
framework to strengthen cybersecurity in Industry 4.0’s WSNs by integrating ML and DL models using a multi-criteria 
approach. Their framework employs DT, MLP, and Autoencoder models for intrusion detection and classification, achieving 
over 99% accuracy with DT and MLP, while the Autoencoder reaches 91% for binary classification. Udurume et al. [167] 
compared DL and traditional ML models for network intrusion detection using the UNSW-NB15 and NSL-KDD datasets, 
finding that CNN and CNN-BiLSTM outperformed KNN, SVM, and RF, with accuracies of 94.97% and 96.67%, 
respectively. Similarly, Kumar et al. [168] assessed various ML and DL models on the UNSW-NB15 dataset for detecting 
network intrusions. The DT model achieved the highest accuracy at 94.91%, while RF and DNN models also performed 
well, highlighting the potential of ensemble and DL approaches. These models enhance IDS by providing high precision and 
recall rates for diverse attack types, ensuring more reliable security measures. El-Shafeiy et al. [137] proposed the deep 
complex gated recurrent network-based IoT (DCGR_IoT), an IDS using deep complex gated recurrent networks (CGRNs), 
and CNN for enhanced IoT network security. DCGR_IoT extracts spatial and temporal features to improve anomaly 
detection and filter unnecessary data. Evaluations on the UNSW-NB15, KDDCup99, and IoT-23 datasets show a 99.2% 
detection accuracy, demonstrating its effectiveness in defending against advanced cyber-attacks. Sayegh et al. [169] 
presented an LSTM-based IDS designed for IoT networks, utilizing SMOTE to address data imbalance. The system utilizes 
DL techniques and feature selection to achieve high detection accuracy, attaining 99.34% on CICIDS2017, 99.67% on NSL-
KDD, and 98.31% on UNSW-NB15. These results highlight the effectiveness of the IDS in enhancing IoT network security. 
Cui et al. [170] proposed an intrusion detection model using temporal convolutional residual modules and an attention 
mechanism to focus on critical features, improving detection performance. They achieve accuracies of 99.55% on the 
ToN_IoT dataset and 89.23% on the UNSW-NB15 dataset. These results show 0.14% and 15.3% improvements over 
existing state-of-the-art models, demonstrating the model’s superior performance. Ataa et al. [171] developed and compared 
two DL models, a hybrid CNN-LSTM and a Transformer encoder-only architecture, for IDS targeting SDN controllers using 
the InSDN dataset. The Transformer model achieves the highest accuracy at 99.02%, while the CNN-LSTM model performs 
slightly lower but excels with fewer features. Both models show high performance, with the CNN-LSTM model being more 
suitable for feature reduction and shorter testing times, and both models benefiting from grouping poorly represented attacks. 
Kantharaju et al. [172] presented the SAPGAN-based IDS (SAPGAN-IDS-IoT) for detecting security threats in IoT 
networks, evaluated using accuracy, F1-score, ROC, and computational time metrics. The framework achieves up to 22.65% 
higher F-score and 21.55% higher AUC compared to CNN-IDS-IoT, DNN-IDS-IoT, and DBN-CSSA-IDS-IoT.  

5.3.4. Detection and prevention of man-in-the-middle attacks 

Man-in-the-middle attacks seriously threaten the IoWT, where cybercriminals intercept and manipulate data exchanged 
between interconnected devices, such as sensors and control systems. Exploiting weak security measures and outdated 
communication protocols that often lack encryption and authentication, attackers can capture, modify, or inject malicious 
data without detection. This interference can distort environmental readings, disrupt automated processes, and grant 
unauthorized control over critical systems like irrigation or water quality monitoring. IoWT systems must monitor for threats 
using advanced anomaly detection and network traffic analysis techniques. By constantly analyzing data patterns, they 
swiftly detect and address suspicious activity, preventing potential security breaches before they occur. Machine learning 
and DL approaches are becoming essential tools for detecting and preventing MitM attacks, strengthening the security of 
IoWT networks. Machine learning algorithms enhance security in IoWT networks by analyzing large datasets to detect 
patterns and anomalies that indicate malicious activity. Trained on historical attack data, these models differentiate legitimate 
communication from potential threats and continuously monitor network traffic for real-time MitM attack detection. Machine 
learning and DL offer adaptive and scalable security solutions, evolving with new threats and integrating seamlessly with 
encryption and IDS for multi-layered defense. Kandasamy and Roseline [173] developed the AEXB model, which combines 
AutoEncoder for feature extraction with XGBoost for classification, achieving 97.24% accuracy on the IDSH dataset. This 
hybrid approach enables real-time threat detection in dynamic smart home environments while optimizing feature 
engineering, reducing false positives, and minimizing computational overhead. 

5.3.5. Detection of phishing attack 

Phishing attacks targeting the IoWT exploit vulnerabilities in connected devices and networks that monitor and manage 
wetland ecosystems. Cybercriminals deceive users with fake emails, messages, or interfaces that mimic trusted sources, such 
as environmental agencies or IoWT device manufacturers, to steal sensitive information like passwords and access 
credentials. Once attackers gain access, they can manipulate devices, disrupting data collection and ecosystem management 
and potentially harming fragile wetlands. The interconnectedness of IoWT systems amplifies the risk, as compromised 
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credentials can grant broad access. Traditional phishing detection methods struggle to keep pace with evolving tactics, 
necessitating advanced solutions like ML and DL to detect anomalies and patterns in network traffic, user behavior, and 
communication protocols. Machine learning and DL models, such as CNN and RNN, can effectively identify phishing 
attempts by analyzing content from emails, URLs, and sensor data, continuously adapting to emerging threats. These 
advanced systems enhance IoWT security, ensuring reliable ecosystem management and protection from cyber risks. The 
following are some notable research studies that employed ML and DL to detect phishing attacks in IoT. Mahmud et al. 
[174] introduced a hybrid DL model that combines CNNs and Bidirectional Gated Recurrent Units (Bi-GRUs) CNN-Bi-
GRU to detect and classify smishing attacks accurately. Using the SMS Phishing Collection dataset and Word2Vec for text 
preprocessing, the model achieved a remarkable 99.82% accuracy in identifying phishing messages. Deep learning models 
demonstrate significant potential in strengthening SMS phishing security by accurately identifying and classifying phishing 
attempts. This approach offers a robust tool for combating cybercrime. Gupta et al. [175] proposed a phishing email detection 
framework that combines Bidirectional Encoder Representations from Transformers (BERT) for feature extraction and CNN 
for classification, achieving 97.5% accuracy in identifying phishing emails. By leveraging BERT’s linguistic capabilities 
and CNN’s classification precision, the model effectively addresses the complexities of phishing attacks in enterprise 
systems. Taha et al. [176] analyzed unique, categorized results from the ML dataset. Random forest achieved the highest 
accuracy (96.89%), outperforming DT (94.57%) and XGBoost. These results establish RF as the most effective model for 
classification tasks and the top recommendation. Sahingoz et al. [177] developed a phishing detection system using deep 
learning with five algorithms: ANN, CNN, RNN, bidirectional RNN, and attention networks. It classifies web pages quickly 
using URLs and evaluates performance with a five million labeled URLs dataset. The results show that CNN achieved the 
highest accuracy at 98.74%, highlighting DL’s effectiveness in cybersecurity. Patil et al. [178] applied SVM and XGBoost 
algorithms to various phishing datasets, including the Phishing Dataset for ML and Website Phishing Datasets 1 and 2. It 
reports that XGBoost outperforms SVM, achieving accuracy, precision, and recall of 90%, 88%, and 87%, respectively, 
while demonstrating a remarkable computation time of 0.00894 seconds. In comparison, SVM achieves accuracy, precision, 
and recall values of 85%, 84%, and 86%. 

5.3.6. Malware detection 

Malware targeting the IoWT poses significant security risks by exploiting vulnerabilities in interconnected devices that 
monitor and manage wetland ecosystems. Cybercriminals can introduce malware to gain unauthorized access, manipulate 
data, or disrupt operations, undermining the accuracy of environmental data [179]. These attacks can remotely control 
devices, causing malfunctions or halting their function, leading to severe disruptions in ecosystem management [44]. Weak 
security protocols and reliance on wireless networks heighten the vulnerability of these devices, and the lack of human 
oversight often allows attacks to go unnoticed for extended periods. Organizations managing IoWT devices must implement 
robust security measures to address these threats. Traditional malware detection methods, like signature-based and anomaly-
based approaches, struggle to identify new or polymorphic malware and are ill-suited for the scale and diversity of IoWT 
systems. Machine learning and DL technologies offer a more effective solution, quickly analyzing large datasets and 
detecting malicious activity [180]. These technologies adapt to new threats by learning from labeled datasets, enabling 
proactive identification of complex patterns and previously unknown malware, thus ensuring the safe and secure operation 
of IoWT devices that protect wetland ecosystems [181]. Several research studies have applied ML and DL techniques to 
detect malware in IoT networks. Hariri et al. [182] proposed a hybrid ransomware detection framework that combines 
entropy and frequency analysis with ML models, including Multi-Layer Perceptron (MLP), DT, RF, KNN, and LR. Using 
the CIC-AndMal2017 Android malware dataset, they incorporated data augmentation to enhance detection by generating 
synthetic ransomware samples. Their experiments revealed that DT and RF classifiers achieved the best performance, with 
DT attaining 98.89% accuracy, 98.81% F1-score, and 98.90% precision, while RF achieved 98.78% accuracy, 98.23% F1-
score, and 98.99% precision. Data augmentation significantly improved detection metrics across all models. Jeebodh and 
Baliyan [183] introduced a DL approach to detect malware using the IoT Malware dataset, which consists of images 
generated from malware bytecode. By identifying visual patterns that differentiate malware from benign files, the method 
achieves a detection accuracy of 98.29%, with precision, F1-score, and recall values of 98.83%, 99%, and 99.17%, 
respectively. These results surpass previous benchmarks, showcasing the effectiveness of image-based analysis for 
cybersecurity applications. Almazroi and Ayub [181] proposed BEFSONet, a specialized BERT-based FFNN Framework 
optimized with the Spotted Hyena Optimizer (SO). Analyzing malware patterns across eight datasets, each representing a 
different type of malware. BEFSONet achieves exceptional metrics, including 97.99% accuracy, 97.96 Matthews Correlation 
Coefficient (MCC), 97 F1-Score, 98.37% Area Under the Curve-Receiver Operating Characteristic Curve (AUC-ROC), and 
95.89 Cohen’s Kappa, outperforming methods like CNN, BERT, and ResNet. Its adaptive architecture effectively detects 
and mitigates emerging IoT threats, offering a robust solution in dynamic environments. Charoenwong et al. [184] explored 
using ML techniques to classify malware in IoT devices, focusing on DT, K-NN, and XGBoost algorithms. Tested on a real-
world IoT malware dataset, XGBoost achieved the highest accuracy of 98.44%, outperforming DT (95.27%) and KNN. 
XGBoost’s regularization capabilities enhance precision and recall, making it highly effective for detecting and classifying 
malware. Alkhudaydi et al. [185] utilized ML and DL techniques to analyze the BoT-IoT dataset for effective malware 
detection. They evaluated ten models, including KNN, SVM, and ensemble classifiers like RF, Extra Trees, AdaBoost, 
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LGBM, and DL architectures such as LSTM, GRU, and RNN. XGBoost and CatBoost stood out, achieving 98.50% and 
98.19% accuracy rates, respectively. Bokolo et al. [131] evaluated seven ML and DL techniques for detecting and classifying 
malware into nine families (i.e., RF, DT, SVM, KNN, SGD, LR, NB, and DL techniques) using extracted byte, opcode, and 
section codes. The DL model achieves the highest accuracy of 96%, outperforming traditional methods like SVM, LR, and 
K-NN. These findings emphasize the effectiveness of DL in addressing the complexity of modern malware, with significant 
implications for cybersecurity and forensics. 

5.3.7. Detecting DoS and DDoS attacks 

Denial-of-service and DDoS attacks significantly threaten the functionality and data integrity of IoWT systems, which are 
paramount for monitoring wetlands and responding to environmental changes. A DoS attack targets a single device or 
network, overwhelming it with excessive traffic or malicious requests, leading to disruptions in data transmission and 
potentially shutting down devices [186]. In contrast, a DDoS attack uses multiple compromised devices to flood the target, 
amplifying the impact and making detection and mitigation harder. These attacks exploit vulnerabilities in IoT devices, 
compromising real-time monitoring and hindering informed decision-making for wetland management  [145][187]. 
Detecting and mitigating these attacks involves monitoring unusual traffic patterns, slow device responses, and traffic surges. 
Once identified, countermeasures such as traffic filtering, rate limiting, and network reconfiguration can isolate affected 
devices and restore normal operations. Machine learning and DL can effectively detect these attacks by analyzing data from 
IoWT devices to identify anomalies, such as unusual traffic spikes or suspicious behavior, and recognize patterns that indicate 
potential threats. In contrast, DL techniques, such as CNNs and RNNs, offer more sophisticated analysis of complex data, 
enhancing the accuracy and speed of attack detection. Integrating these technologies helps strengthen the resilience of IoWT 
systems, protecting valuable environmental data and ensuring the effective operation of wetland monitoring networks. 
Several research studies have applied ML and DL techniques to detect DoS and DDoS attacks in the IoWT. Sakr et al. [188] 
evaluated the performance of supervised ML algorithms in predicting DDoS attacks on Energy Hub (EH) systems through 
IoT devices using the CICDDOS2019 and KDD-CUP datasets. The SVM Classifier demonstrated notable accuracy on the 
KDD-CUP dataset, achieving 96.61% accuracy and a 44.50% F1 score with an 80% training size. The RF Classifier delivered 
a balanced performance, earning a 61.02% F1-score at the same training size for the CICDDOS2019 dataset. Gradient 
Boosting outperformed other models, showing high accuracy and F1 scores, particularly with the CICDDOS2019 dataset, 
while hybrid models also exhibited strong results. These findings highlight the need to select tailored ML models to 
strengthen the resilience of EH systems against evolving DDoS threats. Bukhowah et al. [133] presented a new method for 
detecting DoS attacks in Information-Centric Network (ICN)-IoT networks using ML algorithms. The study identifies SVM, 
RF, and KNN as the most effective ML approaches based on classification metrics like accuracy. The strategy, implemented 
on the Named-Data Networking (NDN) architecture and evaluated through ndnSIM simulation and synthetic datasets, aims 
to prevent DoS attacks and protect IoT devices. Alshdadi et al. [189] developed EffiGRU-GhostNet. This ensemble deep-
learning model integrates GRU and GhostNet architectures optimized with Principal Component Analysis-Local Linear 
Projection (PCA-LLP) for efficient DDoS detection on large-scale data. Testing on IoT-23 and APA-DDoS datasets showed 
superior performance, achieving 98.99% recognition with a 0.11% false positive rate and 99.05% accuracy with a 0.01% 
error, outperforming several baselines. Statistical analyses confirmed that EffiGRU-GhostNet actively advances prominent 
data-driven cybersecurity by providing a reliable and scalable solution for dynamic DDoS detection. Almadhor et al. [190] 
proposed using Explainable AI (XAI) and FDNNs to detect and prevent DDoS attacks while ensuring privacy. By training 
the model across multiple client devices using distributed datasets and integrating XGBoost with SHapley Additive 
exPlanations (SHAP) for feature selection, the approach achieves high performance with 99.78% accuracy, 99.80% 
precision, and 99.76% F1 score. The server-side numerical findings highlight the effectiveness and strength of FDNN models 
in accurately identifying various DDoS attacks. The proposed solution demonstrates robustness, preserves privacy, offers 
high scalability, and is well-suited for detecting DDoS attacks in IoT networks. Berqia et al. [191] developed advanced 
detection mechanisms using ML and DL techniques to fortify IoT networks against DDoS attacks. By applying algorithms 
such as LR, KNN, and DNN on the CIC2023 IoT Dataset, it achieved exceptional accuracy (0.9999 precision, recall, and F1 
scores) in detecting various DDoS attack patterns like TCP, SYN, and HTTP floods. Avcı and Koca [192] developed an 
enhanced algorithm that combines the Slime Mould Optimization Algorithm (SMOA) for feature selection with ANN and 
SVM to predict and mitigate DDoS attacks in Building Management Systems (BMS). Trained on the Canadian Institute for 
Cybersecurity (CIC) IoT Dataset 2022, the model achieves 97.44% accuracy in predicting DDoS attack risk factors and an 
impressive 99.19% accuracy in detecting actual DDoS attacks. This high precision prevents system disruptions and manages 
cyber threats, providing a more robust defense than KNN and greatly enhancing DDoS detection and prevention in BMSs. 

5.3.8. Detecting Insider Threats 

Insider threats in the IoWT pose significant risks, as individuals with authorized access, such as disgruntled employees, 
contractors, or partners, may misuse their privileges to manipulate IoWT devices or tamper with environmental data. These 
insiders can bypass traditional security measures like firewalls or encryption, making detecting their actions more 
challenging. Their behavior often mimics normal operations, allowing harm to go unnoticed until it is too late. Organizations 
use advanced monitoring tools powered by ML and DL techniques to address these risks, analyze sensor data, and identify 
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unusual behaviors or anomalies that could signal insider threats [44]. These technologies classify regular activity patterns 
and flag deviations, helping prevent sabotage, data theft, or unintentional damage [46]. Deep learning further enhances 
security by processing complex data and adapting to evolving threats, enabling real-time monitoring and predictive analysis 
for swift response and minimal disruption, safeguarding both the system’s integrity and the environment. Sridevi et al. [193] 
presented a hybrid model combining ML and DL to identify insider threats, achieving a 96.3% detection accuracy. The 
research highlights the advantages of traditional ML algorithms, such as SVM and RF, and DL models, like LSTMs and 
CNNs. Each offers distinct benefits for various applications. The model outperformed traditional methods by identifying 
subtle behavioral patterns in user activity and system logs. 

5.3.9. Advanced persistent threat detection 

Advanced persistent threats increasingly target interconnected devices in wetland ecosystems that rely on IoT technologies 
to monitor and manage environmental factors. These ecosystems, often remote and isolated, are vulnerable due to weak 
security in devices like sensors, communication networks, and actuators. Attackers exploit issues such as weak 
authentication, unsecured communication channels, or outdated software to gain unauthorized access and remain hidden for 
long periods. Once inside, cybercriminals manipulate data, disrupt systems, and cause environmental damage, leading to 
misinformed conservation decisions, endangered wildlife, or undetected pollution [194]. Machine learning and DL 
technologies enhance security in IoWT networks to counter this growing threat. ML algorithms analyze sensor data patterns 
to detect unusual behaviors and emerging threats, while DL processes large data volumes to identify sophisticated attack 
methods that may evade conventional systems. These technologies enable automated threat detection, faster responses, and 
continuous improvements through training on historical attack data. By strengthening the security of IoWT networks, they 
protect critical environmental data and help preserve wetland ecosystems. For example, Selvaraj and Singh used data flow 
parameters like Flow Packets, Flow Inter Arrival Time (IAT) Mean, and Fwd IAT Total to detect APT attacks. They applied 
optimized ML algorithms, including SVM, LR, BNN, and a Bayesian Optimized Ensemble model. Their Bayesian 
Optimized Ensemble model outperformed traditional methods, achieving an accuracy of 97.24%, an F1-score of 0.9845, a 
precision of 0.985, and a recall of 0.9845. The study highlights the enhanced performance of APT attack detection using the 
SCVIC-APT-2021 dataset. 

5.3.10. Detecting botnet attacks 

Botnet attacks target interconnected devices on the IoWT, compromising their functionality and security. Malicious actors 
exploit vulnerabilities in IoWT devices and their communication networks, turning compromised devices into botnets that 
can disrupt data collection, steal information, spread malware, or launch DDoS attacks, causing financial and reputational 
damage [196][197]. As more devices connect in wetland ecosystems, the attack surface expands, increasing the vulnerability 
of IoWT systems. Weak security measures enable attackers to take control of critical infrastructure, allowing botnet activities 
to damage both the system and the environment. Detecting these threats requires analyzing network traffic and system 
behaviors, with ML and DL techniques identifying anomalies and potential attacks [196][197]. By analyzing network traffic 
data, supervised learning helps differentiate between normal and malicious behaviors. In contrast, unsupervised learning 
detects new attack patterns without predefined labels, making it adaptable to the evolving IoWT environment. CNNs and 
RNNs are particularly effective in recognizing complex and emerging botnet threats, enhancing detection and mitigation 
efforts with proactive, autonomous defense and minimal human intervention. Several research studies have applied ML and 
DL techniques to detect botnet attacks. Arnold et al. [143] developed an IoT Botnet detection pipeline that uses a novel 
network traffic visualization and a CNN for cyberattack classification. The pipeline operates efficiently on an embedded 
system, achieving 100% and 99.78% detection rates on the N-BaIoT and IoT-23 datasets. It also provides 2.4 times greater 
throughput and reduces model size by 21.4% compared to a similar accuracy DNN. Wardana et al. [198] proposed a DNN 
model for detecting botnet attacks across heterogeneous IoT devices, using ensemble averaging to combine predictions from 
each training model. They validated the model with the N-BaIoT dataset, achieving high performance with 97.21% accuracy, 
91.41% precision, 87.31% recall, and 88.48% F1-score. The ensemble averaging DNN outperformed individual models in 
detecting botnet attacks across diverse IoT devices, providing a comprehensive solution for IoT environments. Saied et al. 
[199] analyzed the performance of tree-based ML algorithms for detecting botnet attacks in IoT ecosystems using a public 
botnet N-BaIoT dataset. Their study compared DT algorithms and ensemble methods, showing that the RF algorithm 
outperformed others with an accuracy of 0.999991. The results highlighted RF’s superior IoT botnet detection and 
computational efficiency performance. 

5.3.11. Counter-jamming and spoofing attacks 

Jamming attacks in the IoWT occur when attackers disrupt wireless communication channels by generating noise or signals 
on the same frequency, blocking legitimate transmissions between devices. Spoofing attacks deceive the system by sending 
falsified data, such as manipulated sensor readings, leading to unnecessarily incorrect actions like activating water pumps. 
IoWT systems use advanced techniques like frequency hopping spread spectrum, adaptive power control, and redundant 
communication channels to maintain reliable transmissions. Strong authentication, encrypted communication protocols, and 
anomaly detection algorithms protect against spoofing, ensuring data integrity through signal verification. Machine learning 
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and DL enhance defense mechanisms by analyzing large datasets to detect anomalies and identify potential threats. ML 
algorithms utilize pattern recognition and predictive analysis, while DL models process complex data to uncover subtle 
patterns that traditional methods may miss. Integrating ML and DL allows IoWT systems to adapt instantly, offering robust 
protection and ensuring reliable communications, ecosystem monitoring, and effective wetland management against 
sophisticated jamming and spoofing attacks. Rehman et al. [142] introduced a Fog-enabled FL-based IDS (FFL-IDS) 
leveraging CNNs to enhance privacy and ensure low-latency detection in Industrial Internet of Things (IIoT) networks. 
Validated on the Edge-IIoTset and CIC-IDS2017 datasets. The Edge-IIoTset dataset achieved 93.4% accuracy, 91.6% recall, 
88% precision, 87% F1 score, and 87% specificity in detecting jamming and spoofing attacks. The system demonstrated 
greater robustness on the CIC-IDS2017 dataset, with 95.8% accuracy, 94.9% precision, 94% recall, 93% F1 score, and 93% 
specificity. This scalable, high-performance framework effectively secures IIoT environments while preserving data privacy. 

5.3.12. Securing against cross-site scripting attacks and SQL injection attacks 

In the IoWT, attackers can inject malicious scripts into web applications that interact with IoWT devices, enabling cross-site 
scripting (XSS) attacks. Attackers can exploit vulnerabilities in IoWT systems' web interfaces, stealing sensitive data, 
manipulating device functions, or launching further attacks within the network. These systems often involve remote 
monitoring and control, making them vulnerable to unauthorized access, environmental data manipulation, and the 
compromise of critical infrastructure. SQL injection (SQLi) attacks target IoWT systems that rely on databases to manage 
sensor and device data, allowing attackers to bypass security measures and manipulate, delete, or access sensitive 
information. IoWT systems must implement robust security measures like input validation, sanitization, and parameterized 
queries or prepared statements to block SQLi. Machine learning and deep learning techniques enhance security by instantly 
detecting and responding to attacks, analyzing large datasets for known attack patterns, and continuously adapting to 
emerging threats. This proactive approach helps prevent malicious scripts and SQL queries from exploiting vulnerabilities, 
ensuring the integrity and safety of the valuable environmental data managed by IoWT systems. Deep learning is particularly 
valuable in detecting sophisticated attack patterns that might evade traditional security measures. Neural networks learn 
complex features and correlations from large datasets, improving their ability to differentiate between legitimate and 
malicious activities. In the IoWT context, DL enhances the security of sensor networks, data transmission, and web interfaces 
by automatically identifying and neutralizing attacks. IoWT applications can better protect against evolving cyber threats by 
combining ML and DL. Tadhani et al. [200] developed a hybrid DL model combining CNNs and LSTMs to secure web 
applications from SQLi and XSS attacks. The model achieved exceptional accuracy with minimal false positives by training 
on multiple datasets, including the HTTP CSIC 2010, SQLi/XSS Payload, and our custom testbed dataset (99.77%, 99.84%, 
and 99.23%, respectively). This approach outperformed traditional ML methods, offering a robust solution for real-time 
threat detection and web application security. 

While research on using ML and DL to enhance the security of the IoWT is limited, the application of these technologies in 
securing IoT systems can be extended directly to IoWT. By incorporating ML and DL, IoWT systems can significantly 
improve device-level security, ensuring excellent reliability, resilience, and trustworthiness. Table 4 summarizes the related 
works regarding the application of ML and DL in improving the security of IoT. 

TABLE IV.  SUMMARY OF THE RELATED WORKS REGARDING THE APPLICATION OF ML AND DL IN IMPROVING THE SECURITY OF IOT. 
 

Reference Year Focus AI Method ML or DL 

Model 

Dataset(s) Best 

Performing 

Algorithm(s) 

Metrics 

[147] 2025 Detecting 

adversarial 
attacks 

DL Spectrogram-

based CNNs 
and 

Explainable AI 

Benchmark Spectrogram-

based CNNs 
and 

Explainable AI 

Accuracy 

(99.34%, 
99.61%, & 

99.21% 
[148] 2024 Detecting 

adversarial 
attacks 

ML & DL CNN, RF, 

SVM, and 
LSTM 

Diverse CNN and RF Accuracy 

(98.3% & 
97.6%) [149] 2024 Detecting 

adversarial 
attacks 

DL CNN UNSW-NB15 CNN Accuracy 

(95.47%) 

[150] 2024 Detecting 

adversarial 
attacks 

DL CNN, 

convolutional, 
self-attention, 

and GELU 

CIC IoT 2023, 

CIC-MalMem-
2022, and CIC-

IDS2017 

CNN Accuracy 

(99.99%) 
Precision 

(99.99%) 
[151] 2024 Detecting 

adversarial 
attacks 

DL DNN, LSTM, 

and CNN 

CICIoT2023 CNN Accuracy 

(99.10%) 

[152] 2024 Detecting 

adversarial 
attacks 

ML RF, NB, DT, 

Backpropagatio
n NN, 

XGBoost, 

AdaBoost, 
Ensembled RF-

BPNN 

BoTNet-IoT-

L01, NSL-
KDD 

 Accuracy 

(99.9%) 
F1 score 

(99.9%) 
[153] 2024 Detecting 

adversarial 
attacks 

DL CNN and RNN Bot-IoT CNN and RNN Accuracy 

(99%) 

[146] 2023 Detecting 

adversarial 
attacks 

DL FFNN and 

LSTM 

NSL-KDD and 

BoT-IoT 

FFNN Accuracy 

(99.95%) 

[157] 2024 Detecting 

Anomaly 

DL Asymmetric 

stacked 
autoencoder 

and DNN 

BoT-IoT  Accuracy 

(99.99%) 
Precision 

(99.21%) 

F1 score 
(97.69%) 
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[159] 2024 Detecting 

Anomaly 

DL CNNs and 

RNNs 

 RNN Accuracy 

(96%) 

[161] 2023 Detecting 
Anomaly 

DL Stacking deep 
ensemble 

model 

ToN-IoT and 
InSDN 

 Accuracy 
(99.8% and 

99.6%) [162] 2025 Detecting 
intrusion 

ML & DL KNN, SVM, 
RF, DT, 

LSTM, and 

ANN 

UNSW-NB15 RF Accuracy 
(99.5%) 

[163] 2024 Detecting 
intrusion 

ML & DL SVD and 
SMOTE 

ToN_IoT  Accuracy 
(99.98%) 

[164] 2024 Detecting 
intrusion 

DL Convolution 
and Vision 

Transformer 

TON-IoT and 
Bot-IoT 

 Accuracy 
(97.14% and 

99.99%) [165] 2024 Detecting 
intrusion 

DL CNN-GRU and 
CNN-LSTM 

Kitsune and 
TON-IoT 

 Accuracy 
(99.6% and 

99%) [166] 2024 Detecting 
intrusion 

ML & DL DT, MLP, and 
Autoencoder 

WSN-DS DT and MLP Accuracy 
(99%) 

[167] 2024 Detecting 
intrusion 

ML & DL CNN, CNN-
BiLSTM, 

KNN, SVM, 

and RF 

UNSW-NB15 
and NSL-KDD 

CNN and 
CNN-BiLSTM 

Accuracy 
(94.97% and 

96.67%) [168] 2024 Detecting 

intrusion 

ML & DL DT, RF, and 

DNN 

UNSW-NB15 DT Accuracy 

(94.91%) 

[137] 2024 Detecting 
intrusion 

DL CGRNs and 
CNN 

UNSW-NB15, 
KDDCup99, 

and IoT-23 

 Accuracy 
(99.2%) 

[169] 2024 Detecting 
intrusion 

DL LSTM and 
SMOTE 

CICIDS2017, 
NSL-KDD, and 

UNSW-NB15 

 Accuracy 
(99.34%, 

99.67%, and 

98.31%) 
[170] 2024 Detecting 

intrusion 
DL Temporal 

convolutional 

residual 

modules 

ToN_IoT and 
UNSW-NB15 

 Accuracy 
(99.55% and 

89.23%) [171] 2024 Detecting 
intrusion 

DL CNN-LSTM 
and a 

Transformer 

InSDN  Accuracy 
(99.02%) 

[173] 2025 Detecting and 
preventing 

MitM attacks 

ML & DL AutoEncoder 
and XGBoost 

IDSH  Accuracy 
(97.24%) 

[174] 2024 Detecting 
phishing 

attacks 

DL CNNs and Bi-
GRUs 

SMS Phishing 
Collection 

 Accuracy 
(99.82%) 

[175] 2024 Detecting 
phishing 

attacks 

DL BERT and 
CNN 

Kaggle data set  Accuracy 
(97.5%) 

[176] 2024 Detecting 

phishing 
attacks 

ML RF, DT, and 

XGBoost 

ML RF Accuracy 

(96.89%) 

[177] 2024 Detecting 

phishing 
attacks 

DL ANN, CNN, 

RNN, 
bidirectional 

RNN, and 
attention 

networks 

PhishTank CNN Accuracy 

(98.74%) 

[178] 2024 Detecting 

phishing 
attacks 

ML SVM and 

XGBoost 

Phishing 

Dataset for ML 
and Website 

Phishing 
Datasets 1 and 

2 

XGBoost Accuracy 

(90%) 
Precision 

(88%) 
Recall  (87%) 

[182] 2025 Detecting 

malware 

ML MLP, DT, RF, 

KNN, and LR 

CIC-

AndMal2017 

DT and RF Accuracy 

(98.89%) 
Precision 

(98.90%) 
F1-score 

(98.81%) 

[183] 2024 Detecting 

malware 

DL  Malware 

dataset 

 Accuracy 

(98.29%) 
Precision 

(98.83%) 
F1-score (99%) 

Recall 

(99.17%) 

[181] 2024 Detecting 

malware 

DL BERT, FFNN, 

CNN, and 
ResNet 

IOT23 datasets  Accuracy 

(97.99%) 
MCC (97.96) 

F1-Score (97) 
AUC-ROC 

(98.37%) 

Cohen’s Kappa 
(95.89) 

[184] 2024 Detecting 

malware 

ML DT, KNN, and 

XGBoost 

malware 

dataset 

XGBoost Accuracy 

(98.44%) 

[185] 2023 Detecting 

malware 

ML & DL KNN, SVM, 

RF, Extra 
Trees, 

AdaBoost, 

XGBoost, 

CatBoost, 

LGBM, LSTM, 
GRU, and RNN 

BoT-IoT XGBoost and 

CatBoost 

Accuracy 

(98.50% & 
98.19%) [131] 2023 Detecting 

malware 

ML & DL RF, DT, SVM, 

KNN, SGD, 

LR, NB, and 

DL techniques 

Kaggle DL model Accuracy 

(96%) 

[188] 2024 Detecting DoS 

and DDoS 
attacks 

ML SVM, RF, and 

Gradient 
Boosting 

CICDDOS2019 

and KDD-CUP 

SVM Accuracy 

(96.61%) 

[133] 2024 Detecting DoS 

and DDoS 
attacks 

ML SVM, RF, and 

KNN 

Synthetic 

datasets 

  

[189] 2024 Detecting DoS 

and DDoS 
attacks 

ML GRU, 

GhostNet, 
PCA-LLP 

IoT-23 and 

APA-DDoS 

EffiGRU-

GhostNet 

Accuracy 

(99.05%) 

[190] 2024 Detecting DoS 

and DDoS 
attacks 

ML & DL XAI, FDNNs, 

XGBoost with 
SHAP 

Distributed 

datasets 

 Accuracy 

(99.78%) 
Precision 

(99.80%) 
F1 score 

(99.76%) 

[191] 2024 Detecting DoS 

and DDoS 
attacks 

ML & DL LR, KNN, and 

DNN 

CIC2023 IoT LR, KNN, and 

DNN 

Accuracy 

(0.9999) 
Precision 

(0.9999) 
Recall (0.9999) 

F1 scores 

(0.9999) 
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[192] 2023 Detecting DoS 

and DDoS 

attacks 

ML & DL SMOA, ANN, 

KNN, and 

SVM 

CIC IoT 

Dataset 2022 

 Accuracy 

(99.19%) 

[193] 2023 Detecting 
insider threats 

ML & DL SVM, RF, 
LSTMs, and 

CNNs 

User activity 
records and 

system logs 

from multiple 
companies 

 Accuracy 
(96.3%) 

[194] 2024 Detecting APT ML SVM, LR, 
BNN, and a 

Bayesian 

Optimized 
Ensemble 

model 

SCVIC-APT-
2021 

Bayesian 
Optimized 

Ensemble 

Accuracy 
(97.24%) 

Precision 

(0.985) 
F1-score 

(0.9845) 

Recall (0.9845) 

[143] 2024 Detecting 
botnet attacks 

DL CNN and DNN N-BaIoT and 
IoT-23 

CNN Accuracy 
(100% & 

99.78%) [198] 2024 Detecting 
botnet attacks 

DL DNN N-BaIoT DNN Accuracy 
(97.21%) 

Precision 

(91.41%) 
F1-score 

(88.48%) 

Recall 
(87.31%) 

[199] 2023 Detecting 
botnet attacks 

ML DT algorithms 
and ensemble 

methods 

Public botnet 
N-BaIoT 

RF Accuracy 
(0.999991) 

[142] 2024 Counter-
jamming and 

spoofing 

attacks 

ML & DL FL and CNNs Edge-IIoTset 
and CIC-

IDS2017 

 Accuracy 
(95.8%) 

Precision 

(94.9%) 
F1-score (93%) 

Recall (94%) 

[200] 2024 Securing 
against XSS 

attacks and 

SQL injection 

attacks 

DL CNNs and 
LSTMs 

HTTP CSIC 
2010, 

SQLi/XSS 

Payload, and 

our custom 

testbed dataset 

 Accuracy 
(99.77%, 

99.84%, and 

99.23%) 
 

5.4. Real-world implementations and case studies 

Real-world deployments and case studies demonstrating how ML and DL can be used to secure the IoWT include the 
following: 

5.4.1. Machine learning for intelligent wetland monitoring and security 

Kumar and Yadav [201] integrated ML algorithms into IoWT systems to prevent cyberattacks on network infrastructure. By 
training the system with historical attack data, their models identified and blocked potential threats before they could cause 
any harm. Reddy and Raj [202] applied predictive analytics using ML to monitor the wetland ecosystem’s health. The system 
could predict potential security threats like floods or illegal encroachment by analyzing environmental sensor data, allowing 
preemptive actions to secure the ecosystem. Mahamud and Alam [203] developed an intelligent wetland monitoring system 
using IoT sensors to collect environmental data, including water quality and weather information. They employed ML 
models to analyze this data and detect potential threats such as floods, contamination, or unauthorized access. To ensure data 
integrity and privacy, they implemented robust security mechanisms. 

5.4.2. Deep learning for intrusion detection and cybersecurity in Wetland IoT networks 

Sharma et al. [204] applied DL techniques, specifically CNN, to identify anomalies in IoWT communication networks. The 
DL model detected real-time suspicious activities, such as data breaches or unauthorized device access. Ansar et al. [205] 
proposed an innovative design of an IDS for IoT environments using DL-integrated CNN and LSTM networks. The model 
achieved high accuracy in classifying network traffic, demonstrating its applicability in securing IoWT systems. Patel et al. 
[206] used AI to analyze the vast data streams generated by IoWT systems, identifying anomalies that could indicate system 
breaches or environmental threats. The AI model employs a multi-layer defense system to protect against external attacks. 
Wu and Zhang [207] implemented a DL model to secure communication in IoWT networks. The model focused on detecting 
and mitigating unauthorized access by monitoring communication patterns across the network. Hamidouche et al. [208] 
introduced an unsupervised ensemble learning model capable of detecting new or unknown attacks in IoT networks. The 
model’s ability to identify anomalies without labeled data makes it suitable for dynamic IoWT environments.  

5.4.3. Machine learning and DL for cybersecurity in Wetland IoT devices 

Ghaffari et al. [135] reviewed IoT security research, focusing on ML and DL approaches. It categorizes recent studies 
addressing security issues in IoT environments, providing insights applicable to IoWT systems. Khan et al. [209] developed 
a DL-based cybersecurity solution for IoWT devices, utilizing LSTM networks to detect and prevent attacks on devices used 
in wetland monitoring. This model identified irregular device behaviors and flagged potential security breaches. Rafique et 
al. [210] examined privacy and security concerns related to data exchange and storage in intelligent health applications. The 
research explores how ML methods can enhance security and demonstrates their adaptability to IoWT contexts, where they 
can protect sensitive environmental data. Zhang and Liu [211] used the FL model in IoWT systems, enabling devices to 
learn from local data without transmitting sensitive environmental information to a centralized server. This approach 
preserved privacy while allowing the efficient training of models for anomaly detection and threat prevention. 

5.5. Benefits of ML and DL methods for IoWT security 

Machine learning and DL techniques significantly enhance IoWT security by enabling intelligent, real-time threat detection 
and response. Below is a synopsis of how ML and DL improve IoWT security. 
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5.5.1. Anomaly detection and intrusion prevention 

In IoWT networks, ML and DL models can identify anomalous activity like illegal access, odd data patterns, or unexpected 
communication flows that could indicate cyberattacks. A DNN, for example, may rapidly monitor sensor data traffic to spot 
anomalies like DoS or Zero-day attacks, illegal access, or questionable activity directed at IoWT gateways. The system can 
instantly identify a possible attack and remove the water quality sensor from the network if it sends data at an abnormally 
high frequency [212]. 

5.5.2. Real-time decision-making 

Deep learning techniques immediately handle IoWT data, using models like RNNs and LSTMs to analyze sequential data. 
These networks' effective handling of time-series inputs, including sensor measurements, makes timely decision-making 
possible. Their rapid processing capability is crucial in wetland regions, where prompt reactions are necessary to address 
risks or minimize cyber threats [86]. 

5.5.3. Threat prediction and risk assessment 

Proactive steps to safeguard IoWT systems are made possible by supervised and unsupervised machine learning algorithms 
that examine past attack data and environmental variables to forecast possible security risks. A random forest classifier, for 
example, can analyze previous phishing attempts against IoWT device control systems and predict the probability of such 
attacks happening at particular times, like following firmware changes. 

5.5.4. Robustness to dynamic environments 

Wetlands are dynamic habitats that frequently experience changes in temperature, moisture content, and water levels. Deep 
learning techniques, which are excellent at generalizing training data, successfully address this unpredictability. Even 
temporarily, strategies like autoencoders improve flexibility and permit trustworthy anomaly tracking. In constantly 
changing contexts, this flexibility guarantees that IoWT systems stay safe and reliable [213]. 

5.5.5. Secure authentication mechanisms 

Machine learning models improve authentication methods and enable adaptive security features like behavioral analytics 
and biometric-based device authentication. For example, an IoWT device that controls water flow can evaluate user behavior, 
authenticate authorized users, and dynamically validate access credentials while blocking unwanted access. 

5.5.6. Scalability for large-scale IoWT networks 

IoWT systems monitor extensive wetlands using hundreds of networked sensors and communication devices. The high-
dimensional data generated by these devices is handled effectively by DL models, which take advantage of their scalability 
to understand the relationships between different variables. Thanks to this capacity, the models can protect sizable wetland 
ecosystems vigorously [82]. 

5.5.7. Robust encryption and data integrity 

Thanks to DL, advanced encryption methods that withstand brute-force attacks and guarantee the integrity of IoWT data 
while it is being transmitted can be developed. Systems can successfully protect communication between distant wetland 
sensors and central servers by using GANs to actively generate extremely secure synthetic encryption keys that are difficult 
for attackers to decode. 

5.5.8. Ability to learn from unstructured data 

Sensor measurements, multispectral images from monitoring cameras, and unstructured logs are just a few of the data forms 
that IoWT systems gather. DL algorithms, such as CNNs and GANs, efficiently process and analyze these many data types. 
By integrating multimodal data, these strategies improve the security of IoWT systems by using traffic analysis to identify 
suspicious behaviors and picture analysis to detect unwanted access [214]. 

5.5.9. Resource-efficient security solutions 

IoT devices frequently have limitations regarding battery life and computational capability. Nevertheless, ML and DL 
algorithms can balance energy efficiency with strong defenses by optimizing resource allocation for security tasks. 
Lightweight ML models, deployed on edge devices, can locally process and filter sensor data to detect potential threats, 
minimizing the need for frequent communication with a central server and thus reducing power consumption. 

5.5.10. Improved accuracy over traditional methods 

Deep learning methods, especially those based on CNNs, deliver higher accuracy and precision than traditional ML 
algorithms in IDS. These systems can surpass 95% in detection accuracy while reducing false positives and false negatives, 
making them highly effective for IoWT systems. This improved accuracy is essential, as unnecessary alarm triggers can 
cause disruptions and waste valuable resources. 
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5.5.11. Adaptive and context-aware security 

Machine learning models can adapt to dynamic changes in IoWT environments by learning from new data to improve their 
ability to recognize and mitigate security risks over time. For instance, a RL algorithm can adjust to seasonal variations in 
wetland sensor activity, ensuring it minimizes false positives in anomaly detection during periods of high biological activity, 
such as bird migration seasons. 

5.5.12. Automation of security operations 

Deep learning models autonomously perform various security tasks within the IoWT system without human intervention. 
After training, these models continuously monitor for vulnerabilities, offer countermeasure suggestions to the control center, 
or even activate them automatically. This autonomy reduces the workload for security teams, enabling them to focus on 
other essential tasks related to the IoWT [78]. 

5.5.13. Mitigating physical attacks 

IoWT devices placed in remote and vulnerable locations risk physical tampering. Machine learning and DL methods can 
monitor physical security and alert administrators to threats. For instance, a DL-based image recognition system linked to 
surveillance cameras in a wetland can detect unauthorized human activity near IoWT sensors and immediately notify 
administrators. 

5.5.14. Proactive threat prevention 

Deep reinforcement learning techniques help IoWT systems predict and address security threats by dynamically adjusting 
security measures in response to environmental changes or emerging risks. For example, a DRL model can actively manage 
firewall rules, encrypt sensitive data, and optimize resource allocation to mitigate potential threats, thus strengthening the 
security of IoWT systems against evolving cyber risks [215]. 

5.5.15. Automated threat response 

Deep learning models can automate responses to detected security threats, minimizing the time needed to mitigate risks and 
maintaining system operation during attacks. For instance, a DL-based decision system can identify a malware-infected 
IoWT sensor, immediately isolate it from the network, and deploy security patches to other vulnerable devices. 

5.5.16. Privacy preservation 

By keeping sensitive data local, ML techniques like FL enable IoWT security systems to learn and improve while 
safeguarding user and environmental privacy. For instance, wetland sensors measuring biodiversity data can collaboratively 
train anomaly detection models using FL without sharing raw data, thereby minimizing the risk of privacy breaches. 

5.5.17. Real-time monitoring and alert systems 

Machine learning and DL systems monitor in real-time, allowing for the rapid detection and mitigation of security threats. 
For instance, RNNs analyze time-series data from IoWT sensors to spot patterns that signal potential tampering or 
cyberattacks, such as sudden changes in water temperature readings. 

5.6. Comparison of ML and DL Approaches in the IoWT Security 

The IoWT focuses on analyzing wetland ecosystems for environmental monitoring and resource usage. These systems 
generate large volumes of diverse data, making them vulnerable to various cyber risks. While ML and DL share similarities, 
their unique features enable them to address different security threats in IoWT networks. 

Machine learning algorithms like SVM, RF, and KNN play a vital role in decision-making for IoWT security due to their 
ease of implementation, efficiency, and explainability. These models accurately predict cyberattacks like DDoS by analyzing 
previous incidents, and feature selection methods help reduce computation, making them suitable for IoWT devices. 
However, ML systems rely heavily on feature engineering, which requires domain knowledge and can struggle to adapt to 
adversary actions’ dynamic and complex nature in high-dimensional IoWT environments [216][217]. In wetland monitoring 
and management, ML techniques like RF and SVM perform well in wetland classification, particularly with smaller datasets. 
However, they depend on manual feature extraction, which limits their ability to capture complex patterns. CNNs and RNNs 
automatically learn hierarchical features from raw data, excelling in large-scale and complex wetland mapping tasks. While 
ML remains more practical for smaller datasets and limited computational resources, DL outperforms ML in handling large 
datasets and high-spatial-resolution data, enabling more accurate and automated wetland monitoring in the IoWT [20]. 
Traditional ML techniques, such as SVM, RF, and XGBoost, have been actively applied to classify wetland types and assess 
water areas. Guillou et al. [218] compared RF and CNN approaches for pre-locating wetlands, finding that RF achieved 
higher accuracy, though CNNs demonstrated potential with architectural improvements. Similarly, Günen [219] evaluated 
various ML methods, including SVM, Linear Discriminant Analysis, KNN, Canonical Correlation Forests, and 
AdaBoost.M1, for identifying wetland water areas using Sentinel-2 images, noting that these techniques struggled to capture 
the complex, fully non-linear relationships in wetland data. Verma et al. [220] developed a remotely operated wetland siphon 
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system that leverages ML algorithms to predict water levels and manage water flow during hurricanes, effectively mitigating 
flood risks.  

Gemechu et al. [221] used ML algorithms with remotely sensed data to detect wetland area changes and highlighted the 
potential for enhanced accuracy through integration with DL methods. Deep learning models, especially CNNs and RNNs, 
play an increasingly vital role in intrusion and anomaly detection in the IoWT by extracting high-level features from raw, 
unstructured data. CNNs effectively differentiate signals from wetland instruments and detect intrusions, while RNNs 
capture temporal patterns in IoWT traffic. Their flexibility and modularity enable them to detect zero-day attacks and address 
real-time security challenges. However, their complexity, high resource demands, and black-box nature create challenges 
for IoWT systems with low-power devices, particularly at the network edge, where interpretability and reliability are crucial 
for environmental applications. Traditional ML models perform well in low-complexity scenarios and when data 
explainability is essential, but DL models excel at handling large, high-dimensional datasets and identifying complex attack 
patterns. A recent study reported that DL models achieved 96% accuracy in IoWT attack detection, surpassing the 89% 
accuracy of ML models [222][223]. 

Additionally, CNNs have consistently outperformed traditional ML methods in wetland classification tasks. Vynikal et al. 
[224] demonstrated the superiority of the U-Net architecture in delineating intricate wetland boundaries on historical 
topographic maps compared to other DL models. Günen [219] demonstrated that a 1D CNN model offers significant 
advantages in classifying wetland water areas, outperforming traditional ML algorithms in accuracy, recall, precision, 
specificity, and F-scores. In analyzing remote sensing images, he also presented a DL-based vision transformer model that 
performed better than CNN-based techniques, particularly when handling intricate satellite image features. Additionally, 
Günen investigated DL methods for identifying the ethnic backgrounds of individuals in wetland areas, demonstrating better 
results in feature selection and model building when contrasted with conventional ML techniques. 

With varying levels of complexity and data needs, ML and DL each offer unique benefits to IoWT applications. ML performs 
exceptionally well in predictive modeling and classification jobs with little computing effort, efficiently handling structured 
data and smaller datasets. On the other hand, DL is more accurate at processing unstructured data, like photos, and identifying 
intricate, non-linear patterns, but it comes at a higher computational cost. The resource-intensive aspect of DL enables it to 
represent these intricacies more successfully than ML, which may find it challenging to capture the complex linkages found 
in wetland ecosystems. Researchers can provide the best solutions for wetland ecosystem monitoring and management by 
fusing the feature selection power of ML with the feature learning power of DL. 

6. CHALLENGES IN APPLYING ML AND DL METHODS TO IoWT SECURITY 

Securing the IoWT with ML and DL methods is challenging due to the unique conditions of wetland environments, the 
limited resources of IoWT devices, and the evolving complexity of cyber threats. These factors demand customized security 
approaches that account for environmental and technological constraints, ensuring adequate protection despite these 
challenges. Below is a brief description of these challenges: 

6.1. Data privacy and security 

IoWT systems gather vast amounts of environmental and user data, including sensitive details like geolocation and usage 
patterns, raising significant privacy and security concerns. Integrating ML and DL into these systems requires access to this 
data, making it challenging to prevent unauthorized access and breaches while ensuring model effectiveness. Cloud-based 
DL processing further increases data privacy risks [126][225]. Privacy-preserving ML techniques, such as FL and differential 
privacy, remain underexplored in IoWT, highlighting a critical gap in securing sensitive data processing. 

6.2. Computational constraints 

Wetland monitoring devices in IoWT systems often operate in environments with limited resources, where the high 
computational demands of ML and DL algorithms hinder real-time data processing and security responses. Studies highlight 
that DL techniques, including DNN, CNNs, and GANs, require substantial computational power, making them impractical 
for resource-constrained devices like low-power sensors and microcontrollers [43][126][225]. Although less demanding, 
ML models like RF still require optimization to operate effectively in IoWT systems. In ecologically sensitive wetlands, the 
substantial processing time and energy consumption of DL models raises environmental concerns, decreases operational 
efficiency, and increases system downtime [160]. 

6.3. Scarcity of high-quality labeled data 

Machine learning and DL models need big, high-quality datasets for real-world training. However, sparse, noisy, or 
unlabeled data are common problems for IoWT applications, which lowers model accuracy and dependability. Because AI 
algorithms in IoT security depend on considerable, clean information to identify anomalies and forecast environmental 
changes, these difficulties make it challenging to create reliable models [126][226]. The scarcity of labeled data weakens 
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their capacity to develop trustworthy detection metrics. Furthermore, the absence of widely recognized, standardized 
databases makes comparing strategies and evaluating results challenging, which slows down research [227]. 

6.4. Heterogeneous and imbalanced data 

IoWT systems generate vast amounts of diverse and imbalanced data from water quality sensors, biodiversity monitors, and 
weather stations, where routine events significantly outnumber anomalies or security threats [160]. Training ML and DL 
models on such datasets often results in biased predictions favoring the majority class, making detecting rare but critical 
threats challenging [126]. Researchers address this issue through oversampling, under-sampling, and synthetic data 
generation, but these techniques increase computational complexity and complicate training. Deep learning models, which 
rely on large, labeled datasets, struggle in sparsely populated environments like wetlands, where heterogeneous data require 
extensive preprocessing. The shortage of domain experts further slows progress, and limited training samples weaken model 
performance and reduce detection accuracy. 

6.5. Lack of interpretability and explainability 

Deep learning methods lack interpretability, making it challenging to explain their decision-making processes. This 
transparency issue weakens IoWT security, as understanding threat detection reasoning is essential for effective responses 
[126]. Despite this limitation, DL continues to gain traction in IoWT applications, emphasizing the need to understand its 
inner workings better. Environmental scientists and policymakers often view these algorithms as “black boxes,” highlighting 
the urgency of improving transparency [228]. 

6.6. Evolving cyber threats 

Sophisticated cyber threats, including APTs, zero-day exploits, and malware attacks, increasingly target IoWT environments 
by leveraging complex and evolving attack vectors that challenge traditional ML models. While DL methods like RNNs and 
CNNs effectively capture temporal and spatial data features, their performance depends on continuously updated training 
datasets, which are difficult to maintain in IoWT contexts [126]. Adversarial attacks exploit NN weaknesses by subtly 
altering sensor data, deceiving DL-based IDS, and compromising network security. These vulnerabilities pose significant 
risks to IoWT applications, such as wetland hubs, where adversarial ML attacks can lead to misclassifications and flawed 
assessments, ultimately threatening environmental management efforts [229]. 

6.7. Scalability issues 

Scaling ML models to handle vast data and numerous devices in IoWT systems remains a significant challenge, especially 
as networks grow. These systems deploy thousands of interconnected devices in wetland areas, making it increasingly 
complex to implement scalable security mechanisms. Ensuring security across multiple devices and data streams poses 
difficulties for ML and DL models. Research on ML-enabled IoT security highlights unresolved issues related to APT and 
stresses the need for scalable solutions. Centralized DL approaches often create bottlenecks, while decentralized, edge-based 
learning introduces challenges like communication overhead and data synchronization [102][126][230]. 

6.8. Ethical and legal considerations 

Deploying ML and DL in the IoWT raises ethical and legal challenges, particularly in data ownership, user consent, and 
compliance with environmental regulations. Ensuring responsible and lawful implementation requires addressing these 
concerns to protect user rights, maintain transparency, and uphold regulatory standards. 

6.9. Environmental factors  

Wetland environments present dynamic and harsh conditions, such as extreme weather, high humidity, and fluctuating water 
levels, which lead to data transmission delays, signal degradation, and device failures. These challenges hinder the 
deployment and maintenance of ML and DL-based security systems, especially in IoWT networks. For instance, disruptions 
in data can undermine the real-time detection capabilities of IDS, leaving the networks more susceptible to attacks. 

6.10. Lack of standardized security frameworks 

The IoWT domain lacks standardized frameworks for implementing ML and DL-based security solutions, making it 
challenging to design interoperable and robust security systems that tackle the wide range of threats IoWT networks face. 
Deploying these advanced methods becomes more complex and costly, requiring customization to suit specific wetland use 
cases. 

6.11. Overfitting and poor generalization 

Deep learning models tend to overfit when working with large, tiny, or unbalanced datasets. This problem presents a 
difficulty in terms of IoWT security. Even while the model performs exceptionally well with training data, adjusting and 
functioning well in novel situations or dangers may be difficult. This lack of generalization compromises the model's 
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dependability in practical situations. Consequently, DL systems lose their ability to protect IoWT networks against 
sophisticated and constantly changing cyber threats [160]. 

6.12. Deployment challenges in remote areas 

Deploying and running DL models in IoWT systems in places with dispersed infrastructure, including marshes with weak 
network access and low-powered devices, is challenging. These systems demand strong technology, sufficient bandwidth 
for real-time data processing, and frequent updates—all of which are challenging to achieve in such settings. Consequently, 
it is frequently ineffective and impractical to deploy DL-based security solutions in these areas [231]. 

6.13. High initial costs 

Hardware, software, and human resources expenditures are among the high costs associated with DL-based security solution 
deployment in the IoWT. The cost of training and updating models can be prohibitive, particularly for pilot projects in 
wetlands, due to the requirement for GPUs, customized model creation, and AI specialists. These exorbitant expenses can 
impede the further use of DL solutions in these settings [126]. 

6.14. Continuous learning and adaptation 

Because dynamic IoWT environments are constantly changing, developing ML models for them can be difficult. The 
primary challenge is creating models that can adjust to new data and changing circumstances without requiring whole 
retraining from scratch [126]. Fig. 7 highlights the challenges when applying ML and DL methods to IoWT security. 

 

Fig. 7. Summary of the challenges in applying ML and DL methods to IoWT security. 

 

7. FUTURE RESEARCH DIRECTIONS 

By utilizing ML and DL techniques, IoWT systems can improve predictability, identify anomalies, and facilitate near-real-
time decision-making. However, integrating these technologies presents challenges such as cybersecurity threats, privacy 
concerns, and computational limitations. Further research is needed in several key areas to address these issues and build 
upon recent findings. 

• To protect sensitive ecological data in wetlands, ML and DL techniques like FL and homomorphic encryption can 
provide adaptive encryption, ensuring data privacy in decentralized networks. Additionally, integrating Blockchain 
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with the IoWT enhances data exchange, fostering transparency and accountability in managing ecological data 
while safeguarding it from unauthorized access and alteration. 

• Development of lightweight ML Models: IoWT devices often operate with limited computational resources, 
making the implementation of complex security algorithms difficult. Future research should prioritize the 
development of lightweight ML and DL models optimized for resource-constrained environments. By reducing 
computational overhead without sacrificing detection accuracy, researchers can create efficient solutions that meet 
the security demands of IoWT systems. 

• Enhancement of real-time threat detection: Real-time threat detection is critical for the security of IoWT 
applications. Researchers should enhance these capabilities by designing models capable of swiftly processing and 
analyzing data streams. Advanced DL architectures and edge computing technologies can minimize latency, 
ensuring timely threat response and improving overall system security. 

• Integration of FL approaches: Data privacy remains a significant concern in IoWT systems, making FL a promising 
solution. Federated learning enhances privacy while maintaining robust threat detection by enabling models to train 
across multiple devices without centralizing sensitive data. Future studies should explore its application in IoWT 
security to balance data protection with effective threat management. 

• Adversarial robustness of security models: Machine learning models in IoWT are susceptible to adversarial attacks, 
where malicious inputs aim to deceive the system. Research should concentrate on improving these models’ 
adversarial robustness by exploring techniques such as adversarial training and implementing defensive strategies. 
Strengthening these models will enhance the reliability and resilience of IoWT security measures. 

• Standardization of security protocols: The lack of standardized security protocols in IoWT creates challenges for 
interoperability and comprehensive protection. To overcome this, researchers should work on developing and 
promoting universal security frameworks. These standards would ensure cohesive and effective security practices 
across IoWT devices and networks, fostering better collaboration and protection. 

• Energy-efficient security solutions: Energy efficiency is crucial for IoWT devices, especially when deployed in 
remote locations. Research should aim to design energy-efficient ML algorithms that offer strong security without 
depleting device power resources. By balancing security performance with energy consumption, researchers can 
create solutions that support long-term device operation. 

• Explainability and transparency in AI models: Ensuring the explainability and transparency of AI models is vital 
for building trust and accountability in IoWT security. Future research should focus on improving the 
interpretability of ML and DL models, enabling stakeholders to understand better and trust the decisions these 
systems make. 

• Scalability of security solutions: As IoWT networks grow, security solutions must scale to accommodate increasing 
data and devices. Researchers should investigate scalable ML approaches, including distributed learning techniques 
and cloud-based solutions, to maintain performance and effectiveness in expanding networks. 

• Cross-layer security strategies: Cross-layer security strategies can offer comprehensive protection by addressing 
vulnerabilities at different levels of the IoWT architecture. Future research should explore integrating ML models 
across various layers, from the physical to the application layer, to provide holistic security coverage for IoWT 
systems. 

• Ethical and legal considerations in AI-driven security: The deployment of AI-driven security solutions in IoWT 
raises moral and legal concerns, particularly regarding data privacy and algorithmic bias. Researchers must develop 
ethical frameworks and guidelines to ensure the responsible use of AI in IoWT security applications, actively 
addressing these issues to promote accountability and safeguard ethical standards. These efforts will promote trust, 
fairness, and accountability in adopting advanced security technologies. 

• Future work should focus on extending edge-based DL approaches for local data processing and analysis to improve 
efficiency and reduce reliance on cloud servers. Advancing distributed intelligence can enable IoWT devices to 
identify anomalies and exchange patterns within the network collaboratively. This decentralized approach enhances 
scalability and fault resilience while supporting wetland monitoring systems. Prioritizing edge computing aligns 
with the resource constraints of IoWT devices. 

• IoWT devices often face energy limitations due to their installation in hard-to-reach areas. Future studies must 
prioritize reducing power consumption during ML model training and usage through model quantization, pruning, 
and knowledge distillation. Researchers should also focus on adaptive models that adjust processing capacity based 
on available energy. These approaches can significantly extend the utility and lifespan of such devices. 
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• Developing conceptual and legal guidelines to integrate diverse IoWT devices and platforms: Future efforts can 
prioritize creating ML and DL models to address data format and communication protocol heterogeneities, ensuring 
seamless compatibility across IoWT systems. This research would also enhance the coordination of wetland 
protection programs globally. By addressing these challenges, researchers can drive more effective international 
collaboration and technological integration. 

• Prioritizing human-centric frameworks for IoWT security by developing ML and DL models tailored to 
communities and individuals. Employing participatory design methods can ensure that security solutions are 
culturally appropriate, user-friendly, and practical for wetland conservation. Raising stakeholder awareness about 
proper IoWT usage and cybersecurity will further enhance the utility of these technologies. This approach will 
foster safer and more effective implementation in wetland conservation efforts. 

By focusing on these future research directions, researchers can significantly enhance the security of IoWT systems, ensuring 
these critical networks operate safely and efficiently. This progress will empower the sustainable use of technology to protect 
and preserve wetlands worldwide. 

8. CONCLUSIONS 

This survey emphasizes the urgent need to protect the IoWT using ML and DL techniques to facilitate efficient environmental 
data acquisition and monitoring, ultimately supporting improved decision-making. Integrating IoWT devices poses serious 
security risks and problems. Cutting-edge technologies like ML and DL provide helpful answers by enhancing intrusion 
detection, anomaly detection, and threat prediction algorithms. These techniques improve the speed and accuracy of cyber 
threat identification while allowing systems to adjust to emerging attack patterns swiftly. 

Nevertheless, several challenges exist in creating and applying ML/DL models for IoWT. These include the difficulty of 
creating models appropriate for particular wetland situations, the scarcity of resources in isolated wetland regions, and the 
absence of standardized reference models for IoT security. Future studies must concentrate on creating scalable, lightweight, 
energy-efficient security methods and algorithms so they may be used in these demanding settings. Furthermore, 
incorporating blockchain technology could improve data security even more. 

Cooperation between cybersecurity specialists, IoT engineers, and environmental scientists is crucial to overcome these 
obstacles. Together, these experts provide integrated solutions that address the unique requirements of the IoWT ecosystem. 
Enhancements to the IoWT will ensure strong security and dependability while advancing sustainable growth and 
environmental conservation. 
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