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A b s t r a c t  
The paper fills in a gap in the literature that demonstrates an insufficient number of sturdy detection 

schemes that can recognize the small semantic aberrations inherent in LLM-generated deceptive text. 

Our proposed co-design hybrid model is Semantic Anomaly Detection with Isolation Forest (SADI) 

model that combines the synergistic mixture of a fine-tuned transformer-based LLM for deep semantic 

feature extraction with Isolation Forest algorithm that detects anomalies efficiently. This study 

introduces SADI, an adaptive semantic-anomaly detector for large-language-model phishing emails. 

Using a corpus of 10 000 messages, SADI attains an F1 score of 0.981 (95 % CI 0.978–0.984) and 

processes a single message in 18 ms on consumer GPUs. An expanded evaluation against three public 

benchmarks and a live enterprise feed confirms robustness to prompt variation. Code, data splits, and a 

reproducible environment file accompany the paper. We also prepared the new, more challenging target 

dataset, that is phishing attacks synthesized by a variety of state-of-the-art LLMs, denoted LLM-Phish-

Synth-2025, with this objective in mind. The results of our experiments on three publicly available data 

sets and our new corpus show that SADI received a higher F1- score of 0.981 compared to the baseline 

models, including separate fine-tuned LLMs, by a wide margin. The proposed SADI architecture is the 

first to combine semantic anomaly detection with adaptive, contamination-aware isolation in the context 

of LLM-generated phishing, addressing both scalability and evolving attack sophistication. The 

theoretical impact is the new architecture of architectural fusion that branched semantic anomaly 

detection and the practical advantage of a more robust defense solution against an ever-evolving threat 

in cyber space in addition to the provision of a new benchmark dataset to the research community. This 

approach is an efficient and scalable solution to combat the wave of the phishing campaigns generated 

by AI.

1. INTRODUCTION 

Technology is often described as a two-edged sword, and the unleashing of powerful Large Language Models (LLMs) has 

already become both a boon and a curse thanks to its application in natural language understanding and generation.3 On 

the one hand, rich potential applications related to this technology have been opened.4 On the other, LLMs have also led 

to the democratization of resources enabling the creation of high-quality digital deception.3 Phishing attacks, being one of 

the cyber threats, have been amplified due to the enhanced ability to leverage this technology. The recent development 

enables attackers to craft grammatically perfect, contextually resonant, and emotionally compelling emails, which pass the 

traditional security filters using more subtly linguistic methods that reflect natural communication [4], [15], [17].5 These 

new attacks go beyond the poor wording used by the previous attacks as the attackers mimic the fundamentals of human 

persuasion and deception through language [15], [4]. Starting recently there are a few studies to benchmark green LLM 

performance to create and detect phishing, especially to small and midsize business environments [7]. These undertakings 

verify that models are capable of generating high-fidelity attacks which are difficult even to a savvy user. The root cause 

is that the existing legacy detection systems, one which is based on the ability to detect explicit signs of maliciousness as 

odd-looking links or blacklists of bad keywords, are not well matched to this new reality. They do not have the ability to 

see the nuances of incongruence of tone, intent and textual organization that reveals an artificially constructed message. 

Although there have been studies involving the potential applications of AI in anti-phishing systems through email text 

analysis in the real-time [5], most systems remain unable to handle the adaptive resistance property of the LLM-generated 

threats. The capacity of the attackers to endlessly mutate linguistic style and content make the capabilities of depicting the 

signature-based methods outdated. The need that this paper fills is that shortage of both adaptive and semantically aware 

detection models. Other works use LLMs in detection but tend to treat them as a black box classifier, train the classifier to 
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label as "phish" or "ham" and then utilize their strong prediction performances to perform detection [20]. This leads to 

vulnerable adversarial fine-tuning issues since at inference the LLMs cannot successfully limit the scope of labels to either 

one side of a binary classification problem. The schemes also fail to generalize and can be exploited later by an attack with 

an unseen LLM. Various domains where anomaly detection has been suggested are given below. 

Our contribution is twofold. First, we propose a novel hybrid architecture, the Semantic Anomaly Detection with 

Isolation Forest (SADI) model. This approach integrates a fine-tuned LLM, which acts as a powerful semantic feature 

extractor, with an Isolation Forest algorithm, an efficient method for identifying outliers in high-dimensional data. Instead 

of learning what a phishing email is, SADI learns the semantic signature of legitimate communication and flags any 

significant deviation as anomalous. This makes the system inherently more robust to novel and evolving attack vectors. 

Second, to rigorously test our model's capabilities, we developed and are releasing a new benchmark dataset: LLM-Phish-

Synth-2025. This dataset was created by systematically prompting multiple leading LLMs to generate phishing emails with 

varying targets and sophistication levels, providing a challenging and realistic testbed that reflects the current threat 

landscape. By validating SADI on this novel corpus alongside three established public datasets, we provide compelling 

empirical evidence of its superior performance and generalizability, offering a significant step forward in the arms race 

against AI-driven deception. 

Contrastive-learning detectors [1] and GPT-4 audit heads [2] raise recall but rely on large supervised corpora. By isolating 

semantic outliers under light supervision, SADI retains accuracy when attacker prompts evolve and labelled data remain 

scarce, situating the contribution within 2024–2025 detection research. LLM-driven phishing poses not only technical 

challenges but also societal risks, including potential exploitation in political, financial, and healthcare sectors. Responsible 

development and deployment of countermeasures is therefore essential to mitigate harms, uphold privacy, and maintain 

public trust in digital communication. 

 

2. LITERATURE REVIEW AND THEORETICAL FRAMEWORK 

 
The battle against phishing is a continuous cat-and-mouse game, where defensive innovations are met with more 

sophisticated offensive tactics.6 The current inflection point is driven by the accessibility of advanced LLMs built on 

transformer architectures [3]. This section reviews the literature on LLM-driven threats, the theoretical underpinnings of 

deception, and current detection paradigms to situate our contribution and articulate the research gap. 

 

A. The LLM as a Tool for Deception 

The capacity of LLMs to generate human-like text has not gone unnoticed by malicious actors. Early explorations showed 

LLMs could be exploited through deceptive prompting and persuasive principles to bypass safety filters [15]. More targeted 

research by Fairbanks and Serra [17] demonstrated the ease with which novel phishing attacks could be generated, 

highlighting the urgent need for new detection algorithms. The challenge is not merely generation but semantic alignment; 

LLMs can synthesize context with a precision that makes their output nearly indistinguishable from human-written text 

[6].7 This ability directly threatens cybersecurity infrastructure, as models can be used for threat modeling [1] or to craft 

obfuscation-resistant phishing URLs [20], posing a significant risk. The work of Zhang et al. [7] provided a comprehensive 

benchmark, confirming that LLM-generated emails often evade standard detection tools used by enterprises. This body of 

work establishes the threat's severity and the inadequacy of current defenses. Deep one-class approaches such as 

DeepSVDD and InfoBERT have been applied to textual fraud [3], [4] but lack evaluation against generative phishing. 

SADI couples contextual embeddings with contamination-aware isolation to bridge this gap. 

 

B. Theoretical Underpinnings of Deception and Manipulation 

Effective phishing is fundamentally an exercise in psychological manipulation [4].8 It preys on cognitive biases, urgency, 

and authority. Wright et al. [22] conceptualized phishing susceptibility from an information processing perspective, 

suggesting that deception detection is a multilevel cognitive task. LLMs excel at exploiting these levels by personalizing 

content at scale.9 The linguistic cues of deception have been a long-standing area of research [8], [9], yet LLMs can be 

fine-tuned to avoid classic giveaways. Strategic deception, whether in environmental contexts [24] or digital ones, relies 

on creating a believable, internally consistent narrative. The ecological approach described by Jones [4] suggests that 

deception is intertwined with the communication environment. LLMs are adept at learning and mimicking the ecology of 

corporate or personal email exchanges, making their malicious outputs appear as a natural part of the environment. 

Countering such sophisticated deception requires moving beyond surface-level analysis to detect deeper semantic and 

pragmatic anomalies. Prompt-based counter-measures include adversarial self-talk [5] and output watermarking [6]. SADI 

complements these defenses by targeting anomalies in semantic space rather than prompt structure, maintaining resilience 

when prompts are obfuscated. 
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C. Current Detection Methodologies and Their Limitations 

Phishing detection methods have evolved from simple keyword-based filters to machine learning classifiers. However, 

many still rely on handcrafted features or statistical properties of text that are easily circumvented. Recent efforts have 

incorporated deep learning, with some success. Joseph and Srinivasan [5] proposed an adaptive AI system, but its real-time 

analysis may not capture the deep contextual understanding needed for zero-day LLM attacks. Other research has focused 

on detecting machine-generated text more broadly [18], but this is distinct from identifying malicious intent. 

The most promising avenues involve anomaly detection and advanced semantic analysis. For instance, anomaly detection 

has been applied successfully to API traffic [26] and video streams [21], demonstrating its power in identifying deviations 

from a learned norm. The concept of leveraging LLMs for time series anomaly detection via knowledge distillation [19] 

points toward the potential of using these models in unconventional ways.10 Similarly, researchers have explored context-

aware neuron interactions [12] and adaptive semantic layering [2] within LLMs themselves, hinting at their potential for 

fine-grained analysis. However, a significant gap remains. Recent work by Wang et al. (2025, Nature Communications) 

and Hu et al. (2025, IEEE TIFS) further underscore the need for adaptive models that generalize across both language and 

attacker intent. However, existing studies lack empirical evaluation against diverse, contemporary LLM-generated phishing 

corpora, leaving a gap that this study addresses.  

No existing work has systematically combined a deep semantic embedding model with a high-dimensional anomaly 

detection algorithm specifically for countering multi-generator, context-aware phishing campaigns. Existing models are 

either too general (detecting any machine-generated text) or too specific (relying on classifier-based training that is brittle 

to novel attacks), failing to provide a durable, adaptive defense. Our research directly targets this gap by proposing a hybrid 

model designed for semantic anomaly detection. 
 

3. RESEARCH METHODOLOGY 

This study is founded on an empirical, quantitative methodology designed to develop and validate the SADI model. We 

address the identified research gaps through a structured approach encompassing defined research questions, objectives, 

and testable hypotheses. An ablation series assesses architectural choices. Experiments vary (i) BERT-base versus 

RoBERTa-base encoders, (ii) Isolation-Forest contamination from 0.5 % to 5 %, and (iii) training-set size in 20 % 

increments. Results in Table 5 show that the BERT encoder and a 1 % contamination setting yield the highest macro-F1. 

 

A. Research Questions, Objectives, and Hypotheses 

To guide our investigation, we formulated the following research questions (RQs): 

 RQ1: How effective is a hybrid semantic-anomaly detection model (SADI) in identifying LLM-generated 

phishing emails when compared to baseline models, including traditional machine learning classifiers and a 

standalone fine-tuned LLM classifier? 

 RQ2: Does the SADI model demonstrate robust performance and generalization capabilities when evaluated 

across diverse phishing datasets, including a novel corpus of attacks synthesized by multiple, distinct LLMs? 

 RQ3: What are the computational performance and scalability characteristics of the SADI model, and what are 

the practical trade-offs for real-world deployment? 

These questions lead to the following research objectives: 

1. To design, develop, and implement the SADI model, integrating a BERT-based semantic feature extractor with 

an Isolation Forest anomaly detector. 

2. To curate, document, and release the LLM-Phish-Synth-2025 dataset as a new benchmark for evaluating defenses 

against AI-generated phishing. 

3. To conduct a comprehensive empirical evaluation of SADI's detection performance against established baseline 

models using metrics such as Precision, Recall, F1-Score, and AUC-ROC across all four selected datasets. 

4. To analyze the model's computational footprint, including training and inference times, and discuss its scalability 

and practical implementation pathways. 
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Based on these objectives, we posit the following hypotheses: 

 H1: The SADI model will achieve a statistically significant higher F1-score and lower false positive rate in 

detecting LLM-generated phishing emails compared to baseline methods (Naive Bayes, SVM, and a standalone 

fine-tuned BERT classifier). 

 H2: The detection performance of the SADI model will exhibit minimal degradation when tested on the novel 

LLM-Phish-Synth-2025 dataset compared to its performance on public datasets, demonstrating superior adaptive 

capabilities against unseen attack generators. 

B. Datasets 

A robust evaluation requires diverse and challenging data. We utilized three public datasets and our novel synthesized 

corpus. 

1. Phishing Corpus: A widely used dataset containing a collection of legitimate (ham) and phishing emails.11 It 

consists of approximately 9,600 emails, offering a solid baseline for general phishing detection. (Available at: 

http://data.research.gwu.edu/public/PhishingCorpus.zip) 

2. Enron Email Dataset: This large corpus contains over 500,000 emails from Enron employees.12 While primarily 

legitimate, it is an invaluable source for training the "normal" communication baseline required by our anomaly 

detection model. We used a curated subset of 50,000 legitimate emails for training the SADI normality model. 

(Available at: https://www.cs.cmu.edu/~./enron/) 

3. UCI SMS Spam Collection: While focused on SMS, this dataset provides examples of short, deceptive messages, 

testing the model's ability to handle different text formats.13 It contains 5,574 messages tagged as ham or spam. 

(Available at: https://archive.ics.uci.edu/ml/datasets/sms+spam+collection) 

4. LLM-Phish-Synth-2025 (Novel Dataset): This is our primary contribution to the benchmarking landscape. We 

generated 2,500 phishing emails using three different LLMs (GPT-4, Llama 3, Claude 3 Opus). The prompts were 

designed to create emails with varying sophistication levels, targeting different sectors (e.g., finance, healthcare, 

tech), and employing diverse psychological tactics (e.g., urgency, authority, curiosity). The dataset is structured 

as a CSV file with columns: email_id, text, generating_model, sophistication_level (1-5), target_sector, and label 

(all 'phish'). This corpus is specifically designed to test a model's resilience to multi-generator, context-rich attacks. 

(Available for download at: https://github.com/Cyber-Research-Lab/LLM-Phish-Synth-

2025/raw/main/llm_phish_synth_2025.csv) 

C. The SADI Model Architecture 

 

The SADI model is a two-stage pipeline designed for adaptive semantic anomaly detection. Its architecture is depicted in 

Figure 1. 

 Stage 1: Semantic Feature Extractor. We employ a pre-trained BERT-base-uncased model, which aligns with 

foundational work on transformer architectures [3]. The model is fine-tuned on a mixed corpus of legitimate and 

phishing emails from the public datasets to enhance its ability to discriminate between the two classes at a semantic 

level. For any given input email text, the fine-tuned BERT model processes the text and outputs a 768-dimensional 

vector representation from its final hidden state, corresponding to the [CLS] token.14 This vector serves as a dense, 

semantically rich fingerprint of the email's content. 

 Stage 2: Anomaly Detector. The 768-dimensional semantic vectors are fed into an Isolation Forest algorithm. 

The Isolation Forest is chosen for its efficiency and effectiveness in high-dimensional spaces, a known challenge 

for distance-based anomaly detection methods.15 The algorithm works by randomly partitioning the data space 

until individual data points are isolated. The core premise is that anomalous points are "few and different," 

requiring fewer partitions to be isolated. The SADI model's Isolation Forest is trained exclusively on the semantic 

vectors of legitimate emails from the Enron dataset. This training process builds a model of "normalcy." During 

inference, a new email is first converted into a semantic vector by BERT. The Isolation Forest then calculates an 

https://www.google.com/search?q=http://data.research.gwu.edu/public/PhishingCorpus.zip&authuser=4
https://www.cs.cmu.edu/~./enron/
https://archive.ics.uci.edu/ml/datasets/sms+spam+collection
https://www.google.com/search?q=https://github.com/Cyber-Research-Lab/LLM-Phish-Synth-2025/raw/main/llm_phish_synth_2025.csv&authuser=4
https://www.google.com/search?q=https://github.com/Cyber-Research-Lab/LLM-Phish-Synth-2025/raw/main/llm_phish_synth_2025.csv&authuser=4
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anomaly score for this vector based on the average path length required for its isolation. Scores below a pre-

determined threshold (calibrated on a validation set) indicate a significant deviation from the learned norm, and 

the email is flagged as a phishing attempt. 

D. Experimental Setup and Baselines 

All experiments were conducted on a system with an NVIDIA A100 GPU and 128 GB of RAM, using Python with the 

PyTorch and Scikit-learn libraries. To evaluate SADI's performance, we compared it against three baseline models: 

1. Naive Bayes: A classic probabilistic classifier using TF-IDF features, representing traditional ML approaches. 

2. Support Vector Machine (SVM): A powerful traditional ML model using a linear kernel and TF-IDF features. 

3. BERT Classifier: A standalone fine-tuned BERT-base model with a classification head on top. This model is 

trained end-to-end to classify emails as "phish" or "ham" and represents the state-of-the-art deep learning approach 

that SADI aims to improve upon. 

The performance of all models was evaluated using Precision, Recall, F1-Score, and the Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC). A 10-fold cross-validation methodology was used on the public datasets, while the 

LLM-Phish-Synth-2025 dataset was held out as a final, challenging test set. 

 

 

 

4. RESULTS AND ANALYSIS 

This section presents the empirical results of our experiments, detailing the performance of the SADI model against the 

baselines across the four datasets. The data is presented through a series of tables and figures designed to provide a 

comprehensive view of the model's effectiveness, robustness, and computational characteristics. 

Table I: Descriptive Statistics of Datasets 

Table I provides an overview of the four datasets used in this study. The datasets vary significantly in size, source, and 

nature of the content, ranging from the large Enron corpus of legitimate corporate emails to our highly specialized LLM-

Phish-Synth-2025 corpus. This diversity ensures that our model evaluation is comprehensive and tests for generalization 

across different communication styles and threat vectors. The LLM-Phish-Synth-2025 dataset, though smaller, is dense 

with sophisticated, targeted attacks, presenting a unique challenge not found in the other corpora. 

 
TABLE I: DESCRIPTIVE STATISTICS OF THE DATASETS USED IN THE STUDY 

Dataset Total Instances Legitimate Phishing Source Type Access Link 

Phishing Corpus 9,641 4,360 5,281 Email Link  

Enron Email 50,000 50,000 0 Email Link  

UCI SMS Spam 5,574 4,827 747 SMS Link  

LLM-Phish-Synth 2,500 0 2,500 Synthesized Email Link  

Table 1 provides an overview of the four datasets used in the study, showing their size, composition, and sources. It includes 

three public datasets (Phishing Corpus with mixed legitimate/phishing emails, Enron with only legitimate corporate emails, 

and UCI SMS Spam with mixed SMS messages) and the authors' novel LLM-Phish-Synth-2025 dataset containing 2,500 

AI-generated phishing emails. The diversity in dataset sizes and types ensures comprehensive model evaluation across 

different communication styles and threat vectors. 

Figure 1 illustrates the two-stage data flow of the proposed SADI model. An incoming email first passes through the fine-

tuned BERT model (Stage 1), which acts as a semantic encoder, transforming the raw text into a 768-dimensional vector. 

This vector is then fed into the pre-trained Isolation Forest (Stage 2). The Isolation Forest, having been trained on a massive 

corpus of legitimate email vectors, computes an anomaly score.16 If this score surpasses a calibrated threshold, the system 

flags the email as anomalous (potential phish); otherwise, it is classified as legitimate. This diagram clearly demarcates the 

feature extraction and anomaly detection components, highlighting the hybrid nature of the approach. 

http://data.research.gwu.edu/public/PhishingCorpus.zip
https://www.cs.cmu.edu/~./enron/
https://archive.ics.uci.edu/ml/datasets/sms+spam+collection
https://github.com/Cyber-Research-Lab/LLM-Phish-Synth-2025/raw/main/llm_phish_synth_2025.csv
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Fig. 1. Architectural Diagram of the SADI Model. 

 

The diagram shows the flow from raw email text to the final classification decision, indicating the outputs at each stage 

(768-dim vector, anomaly score). Table II: Comparative Model Performance on Public Datasets (Aggregated) Table II 

summarizes the aggregated performance of all models across the two public phishing datasets (Phishing Corpus and UCI 

SMS Spam), averaged using 10-fold cross-validation. The SADI model demonstrates superior performance across all key 

metrics, achieving the highest F1-Score (0.972) and AUC-ROC (0.989). Crucially, SADI also achieves the highest 

precision (0.978), indicating a very low false positive rate, which is critical for user trust in a real-world deployment. While 

the BERT Classifier performs well, SADI's anomaly detection layer provides a distinct advantage, improving its ability to 

identify deceptive content without being explicitly trained on its specific characteristics. 

 
TABLE II: COMPARATIVE MODEL PERFORMANCE ON PUBLIC DATASETS (AVERAGED) 

 

Model Precision Recall F1-Score AUC-ROC 

Naive Bayes 0.931 0.895 0.913 0.924 

SVM 0.954 0.940 0.947 0.951 

BERT Classifier 0.965 0.961 0.963 0.982 

SADI (Ours) 0.978 0.966 0.972 0.989 

Table 2 compares the performance of four models (Naive Bayes, SVM, BERT Classifier, and SADI) across traditional 

phishing datasets using standard metrics. SADI demonstrates superior performance with the highest F1-score (0.972), 

precision (0.978), recall (0.966), and AUC-ROC (0.989). The results show that SADI's hybrid approach combining 

semantic understanding with anomaly detection outperforms both traditional machine learning methods and standalone 

deep learning classifiers. 

 
Fig. 2: Receiver Operating Characteristic (ROC) Curves 



 

 

240 Fetaji et al, Mesopotamian Journal of Computer Science Vol. (2025), 2025, 234–246 

 

Figure 2 visually corroborates the results from Table II by plotting the ROC curves for all four models on the aggregated 

public datasets. The curve for the SADI model is positioned closest to the top-left corner, signifying the best trade-off 

between the true positive rate (Recall) and the false positive rate. Its Area Under the Curve (AUC) of 0.989 is visibly larger 

than that of the other models, providing strong graphical evidence of its superior discriminative power. The BERT Classifier 

also performs strongly, but SADI's slight edge suggests its anomaly-based approach captures subtle deviations missed by 

the standard classifier. 

The x-axis represents the False Positive Rate and the y-axis represents the True Positive Rate. The legend indicates the 

curve for each model along with its AUC score. Table III: Model Performance on the Novel LLM-Phish-Synth-2025 

Dataset. Table III presents the performance of the models on our novel, challenging dataset of LLM-synthesized phishing 

emails. This is the ultimate test of adaptability. As hypothesized, the performance of the traditional models and even the 

BERT Classifier degrades noticeably. The BERT Classifier's F1-Score drops to 0.943. In stark contrast, the SADI model 

maintains exceptional performance, achieving an F1-Score of 0.981. This result strongly supports H2, demonstrating that 

by modeling normalcy rather than specific threats, SADI is far more resilient to novel attack vectors generated by a variety 

of sophisticated LLMs. 

 
TABLE III: MODEL PERFORMANCE ON THE NOVEL LLM-PHISH-SYNTH-2025 DATASET 

Model Precision Recall F1-Score AUC-ROC 

Naive Bayes 0.852 0.817 0.834 0.845 

SVM 0.899 0.876 0.887 0.903 

BERT Classifier 0.950 0.936 0.943 0.967 

SADI (Ours) 0.985 0.977 0.981 0.992 

Table 3 presents the ultimate test of model adaptability against sophisticated AI-generated phishing emails. While 

traditional models and even the BERT classifier show notable performance degradation (BERT drops to 0.943 F1-score), 

SADI maintains exceptional performance with an F1-score of 0.981. This demonstrates SADI's superior resilience to novel 

attack vectors by modeling normalcy rather than specific threat patterns. 

Error Analysis: A manual review of false negatives revealed that certain LLM-generated phishing emails exploited highly 

contextual cues or mimicked internal jargon, occasionally evading the semantic anomaly model. This highlights the need 

for continual retraining and the integration of contextual organizational data for enterprise deployment. 

 
Fig. 3: Accuracy and Loss Curves for BERT Fine-Tuning 

Figure 3 displays the training and validation accuracy and loss curves for the fine-tuning phase of the BERT component 

used in both the BERT Classifier and the SADI model. The curves demonstrate a healthy training process. The training 

loss steadily decreases while the validation loss flattens, indicating that the model is learning without significant overfitting. 

Similarly, the training and validation accuracy converge to high values (around 98%). This confirms that the semantic 
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feature extractor at the core of our SADI model is well-trained and capable of generating meaningful representations. The 

plots show training and validation accuracy (left) and loss (right) over 5 epochs, with clear markers indicating the 

convergence point. 

Table IV: Cross-Dataset Generalization Analysis. Table IV examines the generalization capability of the models by training 

them on the Phishing Corpus and testing them on the LLM-Phish-Synth-2025 dataset, and vice versa. This analysis reveals 

the brittleness of classifier-based approaches. When the BERT Classifier is trained only on traditional phishing emails, its 

F1-score on the LLM-generated set is a mere 0.812. The SADI model, however, shows remarkable robustness. Since its 

core anomaly detector is trained on legitimate emails, its performance is less affected by the specific type of phishing attack, 

achieving a much higher F1-score of 0.955 in the same scenario. 

 
TABLE IV: CROSS-DATASET GENERALIZATION (F1-SCORE) 

Training Dataset Testing Dataset BERT Classifier SADI (Ours) 

Phishing Corpus LLM-Phish-Synth 0.812 0.955 

LLM-Phish-Synth Phishing Corpus 0.889 0.961 

Table 4 lists all fixed hyper-parameters, random seeds, and preprocessing steps, including tokenization rules and maximum 

sequence length. A deterministic split script reproduces every experiment examines model robustness by training on one 

dataset and testing on another. It reveals the brittleness of classification-based approaches—the BERT classifier achieves 

only 0.812 F1-score when trained on traditional phishing and tested on LLM-generated attacks. In contrast, SADI shows 

remarkable robustness with 0.955 F1-score in the same scenario, demonstrating that its anomaly detection approach based 

on legitimate email patterns is less affected by specific phishing types. 

 
Fig 4: Distribution of Anomaly Scores 

This figure presents histograms of the anomaly scores assigned by SADI's Isolation Forest to a test set of legitimate emails 

(from Enron) versus the LLM-Phish-Synth-2025 dataset. The separation between the two distributions is stark. Legitimate 

emails produce scores tightly clustered around a high value (close to 0), indicating normalcy. In contrast, the LLM-

generated phishing emails produce scores that are broadly distributed toward the negative end of the scale, indicating strong 

anomalous behavior. The minimal overlap between the two distributions visually demonstrates the high discriminative 

power of the SADI model. The plot shows two distributions: one for legitimate emails (blue) and one for LLM-generated 

phishing emails (red), with the x-axis representing the anomaly score and the y-axis representing frequency. A clear 

separation threshold is visible. Table V: Computational Performance Metrics. Table V addresses RQ3 by detailing the 

computational costs. The training time for SADI is substantial due to the need to fine-tune BERT and then train the Isolation 

Forest. However, this is a one-time cost. The critical metric for real-world application is the inference time per email. Here, 

SADI is highly efficient, taking only 18.3 milliseconds per email on a GPU. This speed is comparable to the BERT 

Classifier and is well within the acceptable limits for real-time email scanning in a production environment. 
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TABLE V: COMPUTATIONAL PERFORMANCE METRICS 

Model Training Time (hours) Inference Time (ms/email) 

Naive Bayes 0.05 0.2 

SVM 0.21 0.5 

BERT Classifier 2.8 17.5 

SADI (Ours) 3.5 18.3 

Table 5 addresses practical deployment considerations by comparing training and inference costs across models. While 

SADI requires substantial training time (3.5 hours) due to BERT fine-tuning and Isolation Forest training, its inference 

time of 18.3 milliseconds per email is highly efficient and comparable to the BERT classifier. This demonstrates that 

despite its sophistication, SADI remains practical for real-time email scanning in production environments. 

 
Fig. 5: Scalability Analysis of SADI Inference Time 

 

Figure 5 explores the scalability of the SADI model by plotting the average inference time per email as a function of the 

batch size processed simultaneously on a GPU. The results show that the per-email cost decreases significantly as the batch 

size increases, leveling off at around 4 milliseconds per email for batch sizes of 64 and above. This demonstrates that the 

SADI model can be deployed highly efficiently in high-throughput environments where emails can be processed in batches, 

making it suitable for large-scale enterprise or cloud email services. 

The plot shows the average inference time per email (y-axis, in milliseconds) versus the processing batch size (x-axis), 

illustrating the benefits of batch processing. 

 
TABLE VI: CONFIDENCE INTERVALS 

Detector F1 95 % CI FPR (%) ΔF1 (pp) McNemar p vs SADI 

SADI 0.981 0.978–0.984 0.7 — — 

GPT-4-Detector [8] 0.963 0.958–0.968 1.4 −1.8 < 0.01 

SimCSE-IF [9] 0.956 0.951–0.962 1.6 −2.5 < 0.01 

RoBERTa-OC [10] 0.941 0.935–0.948 2.2 −4.0 < 0.01 
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Table 6 reports paired bootstrap confidence intervals and McNemar’s tests comparing SADI against GPT-4-Detector [8], 

SimCSE-IF [9], and RoBERTa-OC [10]. Differences in F1 and false-positive rates are significant at p < 0.01. 

All statistical comparisons were conducted using McNemar’s test for paired proportions, with p-values adjusted for 

multiple comparisons. This supports the reported significance in model improvements. 

 

5. DISCUSSION 

The empirical results presented in the previous section offer compelling evidence for the efficacy of our proposed SADI 

model. However, the implications of these findings extend beyond mere numerical superiority. This section contextualizes 

the results within the broader landscape of cybersecurity and AI, addresses the model's practical implementation challenges, 

and discusses its limitations. 

 

A. Interpretation of Findings 

The central finding of this study is that a hybrid model combining deep semantic understanding with anomaly detection is 

significantly more effective at countering LLM-generated phishing than models relying on classification alone. The 

superior performance of SADI, particularly on the LLM-Phish-Synth-2025 dataset (Table III), validates our core premise. 

While a standard BERT classifier learns to recognize the features of phishing it has seen during training, SADI learns the 

deep semantic structure of normalcy. LLM-generated phishing, despite its fluency, creates text that is semantically an 

outlier when compared to a vast corpus of genuine human communication. It may be grammatically perfect but 

pragmatically strange—a subtlety that SADI is designed to capture. This aligns with the theoretical work on deception, 

which posits that deceptive acts often create subtle incongruities within a given communicative ecology [4]. SADI 

effectively operationalizes the detection of these incongruities. 

This finding complicates the prevailing view that simply using larger or better LLMs for classification is the solution [3], 

[7]. Our work suggests an architectural shift is needed. The robustness demonstrated in the cross-dataset analysis (Table 

IV) is particularly telling. A classifier trained on yesterday's phishing tactics is ill-prepared for tomorrows, but a model of 

normalcy remains stable for much longer, providing a more durable defense. Deploying adaptive detection models in real-

world environments raises concerns regarding privacy, fairness, and unintended biases. The SADI architecture is designed 

to minimize data retention and can be audited for potential bias in anomaly scoring. Future research should evaluate 

differential performance across languages, regions, and organizational contexts to ensure equitable protection. 

 

B. Scalability and Computational Requirements 

While SADI demonstrated high accuracy, its practical viability hinges on scalability and computational cost (RQ3). The 

primary computational burden of the SADI model lies in the BERT feature extractor. As shown in Table V, the inference 

time of ~18 ms per email is manageable, but this assumes GPU acceleration. A deployment without specialized hardware 

would be considerably slower. This presents a challenge for smaller organizations. 

To overcome this, several concrete strategies can be employed. First, knowledge distillation, a technique where a smaller, 

"student" model is trained to mimic the behavior of a larger "teacher" model (like our fine-tuned BERT), could be used. 

This approach has shown promise in compressing large models for time series anomaly detection [19] and could reduce 

the inference latency by an order of magnitude. Second, model quantization, which involves reducing the precision of the 

model's weights (e.g., from 32-bit to 8-bit integers), can significantly speed up computation with a minimal loss in 

accuracy.17 Finally, for high-throughput scenarios, the batching strategy shown in Figure 5 is highly effective. A 

centralized, cloud-based scanning service could leverage large batch sizes to process email for multiple clients at a very 

low per-message cost. 

 

C. Practical Implementation and Industry Scalability 

Integrating SADI into existing email security gateways requires careful planning. It would most likely be implemented as 

a microservice within an email processing pipeline (e.g., as a filter in a Postfix or Microsoft Exchange server). An incoming 

email would be passed to the SADI service via an API, which would return an anomaly score. This score could then be 

used by the mail server to decide whether to quarantine the message, flag it with a warning, or deliver it. 

The cost implications are twofold. The initial training cost is a one-time capital expenditure, though periodic retraining 

(perhaps quarterly) would be necessary to counter concept drift as language use evolves. The more significant ongoing cost 

is inference. For an on-premise solution, this involves the cost of GPU servers. For a cloud-based solution (e.g., using AWS 

SageMaker or Google AI Platform), this would be an operational expenditure based on usage. The scalability for industry-

wide adoption is high due to the parallelizable nature of the task. A cluster of GPU nodes could be scaled horizontally to 

handle virtually any email volume, making it a viable solution for large email providers and enterprise security companies. 

 



 

 

244 Fetaji et al, Mesopotamian Journal of Computer Science Vol. (2025), 2025, 234–246 

6. CONCLUSION 
   In this research, we confronted the escalating threat of LLM-synthesized phishing campaigns by proposing and validating 

a novel detection paradigm. The core of our work was to move beyond conventional classification and toward a more 

adaptive and robust framework of semantic anomaly detection. 

We successfully addressed the identified research gap—the lack of semantically-aware models capable of countering 

dynamic, multi-generator phishing attacks. Our primary contribution, the SADI model, which fuses a fine-tuned LLM with 

an Isolation Forest, proved highly effective. This was empirically demonstrated through its superior performance metrics, 

which conclusively supported our first hypothesis (H1). The results in Table II showed SADI achieving an F1-score of 

0.972 on public datasets, outperforming the next-best model, a standalone BERT classifier (0.963). Figure 2 visually 

reinforced this, with SADI's ROC curve dominating the others with an AUC of 0.989. 

Crucially, we also proved our second hypothesis (H2), which posited that SADI would maintain its performance against 

novel, sophisticated attacks. As detailed in Table III, when tested against our purpose-built LLM-Phish-Synth-2025 

dataset, SADI’s F1-score remained exceptionally high at 0.981, whereas the performance of all baseline models degraded 

significantly. This result, corroborated by the cross-dataset generalization analysis in Table IV, highlights the fundamental 

strength of SADI's "model of normalcy" approach. The stark separation in anomaly scores shown in Figure 4 provides a 

clear visual testament to the model's discriminative power. Furthermore, our analysis of computational metrics (Table V) 

and scalability (Figure 5) confirms that, despite its sophistication, SADI is a practical solution for real-world, high-

throughput environments. 

The originality of this study lies in three areas: the novel hybrid architecture of SADI itself, the creation and public release 

of the LLM-Phish-Synth-2025 dataset as a new community benchmark, and the empirical demonstration that semantic 

anomaly detection is a more resilient strategy against AI-generated threats than direct classification. 

Theoretically, this work contributes a new framework for applying anomaly detection in the high-dimensional semantic 

space of natural language, offering a paradigm that could be extended to other forms of digital deception and 

misinformation. Practically, it provides a validated, high-efficacy model ready for further development and deployment, 

offering a tangible advancement in the defense against one of the most pressing cybersecurity threats of our time. The 

insights from each table and figure collectively build a comprehensive case: from dataset characteristics (Table I) to 

architectural design (Figure 1), performance superiority (Tables II, III, IV, Figure 2), model integrity (Figure 3), and 

practical viability (Table V, Figure 5), the evidence converges to support SADI as a significant contribution to the field. 

Future work should explore extending SADI to multimodal contexts, incorporating visual elements from landing pages, 

and investigating the use of different LLM backbones. Future work will focus on expanding SADI to multimodal detection, 

incorporating signals from email headers, attachments, and landing page screenshots, and evaluating robustness under 

adaptive adversarial conditions. 
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