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A B S T R A C T  
A lightweight digital twin model for a single 6G cell operating in the D-band (140 GHz) with a 1 GHz 
bandwidth is presented in this work with the goal of assessing the cell's capacity, coverage, and terminal 
time in order to support extended reality (XR) applications. With a tangent dispersion of 3  dB and a path 
exponent of n = 2 .2 , the model is based on the free-space loss equation as per ITU-R Recommendation 
P.52 5. The instantaneous capacity is determined using the Shannon-Hartley theorem. Three XR sessions 
are created every minute using a Poisson method, and their durations are determined by an exponential 
distribution (mean of 12 0 seconds). In accordance with 3 GPP and Ericsson guidelines for normal XR 
loads, the bit needs per user are randomly selected to fall between 40 and 12 0 Mb/s. The average coverage 
was around 92 %, the average cell capacity was approximately 5.1 Gb/s, and the edge capacity (lowest 
quintile) was approximately 230 Mb/s, according to fifty statistical forecasts. Additionally, the 95th 
percentile round-trip latency was 3 .9 ms, which is significantly less than the permitted maximum (10–
20 ms) for immersive XR research. These findings suggest that modest XR loads may be supported by a 
250-meter cell with a high-gain antenna layout without the need to immediately lower the radius or raise 
the transmitted power. However, the model remains theoretical and simplified, excluding geometric 
blockage and cell overlap in complex metropolitan environments. 

  
 

1. INTRODUCTION 

Digital twins (DT) are precise, multi-level digital replicas of real-world items. These entities may include complex physical 
systems such as machinery, robots, industrial processes, or electronic devices [1]. A virtual model, associated operating data, 
and analysis tools make up a digital twin in the virtual realm [2 ], as shown in Figure 1. 

 

Fig. 1. The digital twin model [3]. 

There is a reciprocal relationship between digital and real-world objects: In order to create DT models, physical systems 
transmit real-time data to the virtual environment. DT then evaluate the data they have gathered, update the models, and 
provide the physical items optimization rules to enhance their functionality [4]. As shown in Figure 2 ., a whole DT model is 
made up of three parts: data, model, and software. 
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Fig. 2. Digital twin- data model software [4]. 

Applications for augmented reality (XR) need end-to-end latency of less than 2 0 milliseconds and data speeds of up to several 
gigabits. These criteria can be met by sixth generation (6G) networks that operate in the sub-terahertz (sub-terahertz) 
frequency band. Network planners may assess performance before implementation thanks to the digital twin, which lowers 
risk and expenses [5]. 

6G has substantial prospects, notwithstanding constraints like as spectrum management, energy efficiency, and hardware 
integration [6]. 

In this study, we provide a novel extended reality function (XRF) model. This concept deploys a digital twin network (DTN) 
by utilising DT technology.  

The original network, which may be a real or virtual network, is replicated in the DTN. Through new immersive network 
features including resource finder, intelligent monitoring, critical node detection, interactive network status visualisations, 
and optimised routing, the XRF module is intended to improve the network experience. This network needs a supporting 
architectural framework to be deployed more easily [7 ]. To guarantee appropriate twinning, synchronisation, and self-
management for the deployment of the DTN and the XRF-enabled module, the supporting architecture needs to be strong 
and dependable [8]. 

Mobile devices, such as laptops, tablets, and smartphones, are categorised as digital twin client devices (DTCDs) as the DTN 
and XRF networks are intended to be an improved, portable version of the digital twin of the original network [9]. The 
suggested architectural framework simulates XR traffic (Poisson arrivals and exponential time frames), builds a digital twin 
of a central 6G cell, and determines the link budget using a Log-Distance attenuation model (with shadow fading), as DTCDs 
generally lack sophisticated computer units [10]. 

It is crucial to stress that the suggested smart network makes it possible to access a duplicate of any network that is linked to 
the Internet, complete with all of its resources and services [11]. However, the idea of Network as a Service (NaaS) is not in 
line with this approach [12 ]. Instead of being owned by a third party, the present idea replicates the original network where 
XR services are implemented [13 ]. 

2. LITERATURE REVIEW 

Numerous survey studies about the use of DT technology in different manufacturing, industrial, and service applications 
have been published.  

Virtual/augmented reality (VR/XR), remote surgery, autonomous vehicles, and instant holographic communications are just 
a few of the applications that are becoming more and more popular as a result of the rapid advancement of technology. These 
applications all require high transmission rates and ultra-low latency in 6G and beyond (6G+) networks. This makes it 
extremely difficult to implement large-scale networks effectively while maintaining user experience in areas like network 
design, planning, troubleshooting, optimisation, and maintenance. The development of a virtual model that replicates the 
real network, allowing for the simulation of various network architectures, the implementation of various operating policies, 
and the replication of intricate failure scenarios under realistic circumstances, has made network digital twin (NDT) 
technology a promising remedy. This is the driving force behind this study, in which we provide an extensive overview of 
non-destructive testing in the context of 6G+, touching on topics like cloud/edge computing, applications (blockchain, 
healthcare, manufacturing, security, vehicular networks), non-terrestrial networks (NTNs), quantum networks, and radio 
access networks (RAN) from both academic and industrial viewpoints [14]. A thorough architectural framework is presented 
in the paper by Calle-Heredia and Hesselbach to facilitate the deployment of XR functions (XRFs) in a digital twin network 
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(DTN) environment. This framework allows for the provision of immersive functionality, such as control and management 
functions, that are not available in the native network. With the help of a network topology configuration and the requirement 
for minimal hardware and software resources, the suggested architecture offers a strong and portable framework that enables 
devices with low processing power, like laptops and smartphones, to take advantage of the DTN's improved network 
functionality without affecting the native network (ON) [15]. 

The goal of the study Yang et al. presented was to create a technical framework that would increase the usability of XR-
based HMI systems and the efficiency of XR application development. The four-layer framework they initially presented 
included a perception layer that included a real machine and a simulation model based on a robot operating system, a machine 
communication layer, a network layer that included three different kinds of communication middleware, and a service layer 
built with Unity that produced digital applications based on XR. They went on to evaluate the framework's responsiveness 
and outline a number of XR-based industrial uses for a DT-based smart crane [16]. 

Recently, QUIC, a new transport protocol, was launched as a TCP substitute to enhance the performance of mobile web 
services. It is challenging to decide whether and when to employ QUIC in large-scale mobile web services, nevertheless, 
considering its benefits and drawbacks. The choice of transport protocols is influenced by a number of factors, including the 
restricted diversity of QUIC implementations, the high user variability in statewide deployments, the complicated temporal 
correlation of network circumstances, and the resources available on mobile devices. In order to improve web request 
completion time and transition between transport protocols for online mobile web services, Zhang et al. introduce WiseTrans, 
an adaptive transport protocol selection technique, in their study. In order to achieve high performance at a reasonable 
operating cost, WiseTrans employs machine learning techniques to address temporal variability, makes decisions based on 
historical data to address spatial variability, uses an online learning approach to address implementation variability, and 
switches transport protocols at the request level. We integrate WiseTrans into Baidu's well-known mobile web services app 
on both the iOS and Android operating systems. Extensive tests shown that, on average, WiseTrans may cut order completion 
times by up to 2 5.8% when compared to a single procedure [17 ]. 

3. SIXTH-GENERATION (6G) NETWORKS 

By 2 030, Sixth-generation (6G)  networks—the logical next step in wireless technology—should be available. With a 
reaction time of under a thousandth of a second, they may achieve connection rates of up to terabits per second. Additionally, 
artificial intelligence will be immediately integrated into these networks, improving the intelligence and efficiency of 
communications [18]. 

6G networks promise exceptional capabilities that go beyond what we now understand about communications thanks to a 
number of aspects that make them a significant advancement over fifth-generation (5G) networks. First off, 6G networks are 
predicted to achieve previously unheard-of speeds of terabits per second, which would enable the transport of enormous 
volumes of data in a matter of milliseconds. Users will be able to operate large apps that need immediate data processing, 
including deep learning and artificial intelligence, or download HD movies in a matter of seconds thanks to these incredibly 
fast speeds [19].  

Almost instantaneous communications are made possible by 6G networks' ultra-low latency, which is just milliseconds. For 
time-sensitive applications, like remote surgery that necessitates great accuracy and prompt command execution, or self-
driving cars that depend on real-time choices to prevent accidents, this advancement is perfect. Additionally, interactive 
gaming and virtual reality apps will be transformed by this ultra-responsiveness, which will enhance the realism and 
smoothness of experiences [2 0].  

The enormous ability of 6G networks to link a large number of devices at once is another crucial feature. These networks 
will serve as the backbone of smart cities as the Internet of Things (IoT) grows, allowing for the integration of smart 
infrastructure, household appliances, and traffic lights. In addition to improving service efficiency, this pervasive connection 
will make daily life smarter and more convenient [2 1].  

The incorporation of artificial intelligence into the architecture of 6G is another unique characteristic. These networks will 
develop into intelligent systems that can learn and perform better rather than only serving as a channel for data transmission. 
Through the analysis of real-time data, networks will be able to better manage energy use and tailor their services to each 
user's demands [22].  

Lastly, terahertz frequencies, which offer a large bandwidth that permits data transfer at tremendous speeds, are the 
foundation of 6G networks. Although using these high frequencies presents certain difficulties, such as the requirement to 
create new technologies to address signal loss, they can lead to whole new uses, such as sophisticated sensor systems and 
high-quality satellite communications [23]. 
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4. EXTENDED REALITY (XR) 

In addition to being a general word for augmented reality (AR), mixed reality (MR), and virtual reality (VR), extended reality 
(XR) also refers to and interpolates beyond these, enabling us to view radio waves, sound waves, and other unseen 
phenomena. Users will be immersed in a virtual or augmented environment as a result of the technology's ability to mix or 
mirror the real world with a "digital twin world" that can interact with it [2 4].  

Beyond academic fields, extended reality is expanding quickly and is now having practical applications in a variety of 
industries, including entertainment, film, marketing, real estate, manufacturing, education and maintenance, and teleworking. 
It is also having an impact on the real world in the fields of medicine, architecture, education, and industry. The potential for 
shared usage in training, education, treatments, the workplace, and data exploration and analysis are what define extended 
reality [2 5]. 

The way extended reality works is by gathering visual information that may be shared or seen locally, then sending it to 
human senses over a network. These gadgets allow for instantaneous reactions in a virtual stimuli, resulting in customised 
experiences [2 6].  

5G technology advancements and edge computing, or processing that takes place "at or near the data source," can assist 
boost user capacity, lower latency, and improve data rates. The future of extended reality is probably going to grow as a 
result of these uses [27].  

In order to increase an object's (human or technical) sensory capacity by immersing it in a closed feedback loop, extended 
reality may be used to both humans and technology as entities. We refer to this kind of expanded intelligence as veil metrics 
[2 8]. 

5. METHODOLOGY 

To swiftly confirm a 6G cell's capacity, latency, and coverage for XR sessions, the application builds a lightweight digital 
twin of the cell running at 140 GHz. Fifty statistical drops are used to do this, with each drop varying in terms of user 
locations and distracting situations. MATLAB 2 021b was used to simulate and develop the suggested system. 

An algorithm called Deep Q-Network (DQN) is used. While networks like those used in PPO or A3 C have low computation 
and memory needs, DQN employs a massive neural network. In addition to parallel or execution updates, Q-value updates 
are based on classical Q-learning, which uses less resources by updating advise one experiment at a time (using an experiment 
replay buffer). Because DQN relies on direct performance optimisation (policy-based) rather than value estimation (value-
based), it is more challenging to compare with algorithms like PPO that also depend on direct performance optimisation. It 
is a specialised tool that improves privacy and language customisation by reducing the size of the network or the number of 
computer environments on both sides with restricted resources. For grid or cyber computing applications that need highly 
effective reinforcement learning models with low resource usage, DQN is appropriate. 

5.1 Physical Layer Parameters 

Computer bits are sent from one device to another across the network by the physical layer. Its responsibilities include 
deciding how the network's physical connections are established and how bits are converted into recognisable signals for 
transmission via radio waves, optical, or electrical means.  

TABLE I.  PHYSICAL LAYER PARAMETERS 

Symbol Physical meaning 
Typical values / range (for 6G @ 

140 GHz) 
Why it matters? 

fc Carrier frequency 
100 – 150 GHz (this work uses 140 

GHz) 

Higher fc ⇒ shorter wavelength (smaller antennas) and wider 

contiguous spectrum, but free-space loss and atmospheric 

absorption rise rapidly. 

B RF bandwidth 
0.5 – 2 GHz contiguous blocks; we 
assume 1 GHz 

Shannon capacity grows linearly with B; however kTB noise power 
also scales with B. 

Pt Transmit power (gNB) 
24 – 33 dBm EIRP for sub-THz test 

chips; we use 30 dBm 

Regulated by safety limits; every +3 dB gains ≈ 12 % cell-radius 

increase when n ≈ 2.2. 

Gt, Gr 
Antenna gain (Tx/Rx 

arrays) 
28 – 32 dBi at gNB (256-element 
phased arrays); 10–15 dBi at UE 

High gain beams offset the large path loss and suppress 
interference; requires fast beam-tracking. 

NF Receiver noise figure 
6 – 10 dB for CMOS/SiGe D-band 

LNAs; we assume 7 dB 

Lower NFNF directly improves link budget and cell radius; 

challenging at 140 GHz due to device noise [29]. 

N0 Wideband noise power 
N0 [dBm]= 𝑘𝑡 + 10 log10 𝐵 + 𝑁𝐹 
→ –83 dBm at 1 GHz & 7 dB 
NFNF 

Sets SNR floor; every +3 dB increase halves capacity for fixed Pr. 
(Formula from thermal-noise standard) 

Λ Wavelength λ=c/fc≈2.1mm at 140 GHz Enters FSPL; doubling fc raises FSPL by 6 dB for equal distance. 
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Nn Path-loss exponent 
2.0 (LoS) – 2.4 (urban micro-cells); 

we use 2.2 

Captures scattering & blockage beyond free space; governs how fast 

signal decays with distance. 

σshadow Shadow-fading stdev 
2 – 4 dB indoor; 3 – 6 dB outdoor; 
we use 3 dB 

Models large-scale shadowing; drives outage probability & 
coverage margin. 

γa 
Atmospheric 

attenuation 

< 1 dB / km near 140 GHz (dry air); 

peaks at specific absorption lines 

Matters for backhaul & long ranges; negligible below 0.5 km but 

dominates links ≥ 1 km. 

 

All numerical options follow the recent sub-THZ channel and prototype chip results. There are basic relations used in the 
research: 

 

Free − space path loss (FSPL) = 20 log10(
4𝜋𝑑

λ
)                 (1) 

Wideband capacity: C = B log2(1 + SNR)                       (2 ) 

5.2 Signal path model 

The free space model is used with a path exponent of n=2 .2  and Gaussian tangent scattering: 

PL(d) = 20 log10 (
4𝜋𝑑

λ
) + 10 𝑛 log10 𝑑 + 𝑋𝜎 + 𝛾𝛼𝑑              (3 ) 

FSPL dominates when d < 50 

The term 10 𝑛 log10 𝑑 captures additional loss from reflections and partial obstructions. The atmospheric-attenuation term 

𝛾𝛼𝑑 becomes significant only at long distances or high humidity. 

5.3 Antenna Gain and Beam Enablement 

To maintain high link speeds above 100 m, 6G uses 16×16 element arrays (2 56 antennas) that yield ≈ 3 1 dBi. Doubling the 
number of elements increases gain by +3  dB, but increases power consumption and the algorithms required to track the 
moving device. 

5.4 Capacity (Shannon–Hartley theorem) 

An upper limit on a link's capacity, expressed in bits per second (bps), is provided by Shannon's Theorem and depends on 
the available bandwidth and the link's signal-to-noise ratio. 

The Theorem may be expressed as follows: 

𝐶 = 𝐵 log2(1 + 𝑆𝑁𝑅𝑖𝑙𝑛) [
𝑏𝑖𝑡

𝑠
]                                               (4) 

where B is the line's bandwidth and C is the possible channel capacity. 

5.5 Wideband and Channel Coding 

With B=1 GHz; even in 64-QAM (six bits/symbol) mode and SNR=2 5 dB can be achieved. 

𝑅 = η𝑆𝐸𝐵 =
6

𝑏𝑖𝑡

𝑠

𝐻𝑧
× 1𝐺𝐻𝑧 = 6𝐺𝑏/𝑠                                      (5) 

With dual-polarized antennas (2×2 MIMO) the theoretical rate is doubled to 12  Gb/s if minimal interference is achieved. 

5.6 Physical delay (latency) 

Bidirectional propagation time: 

𝑇𝑝𝑟𝑜𝑝 = 2
𝑑

𝑐
≈ 0.67 𝜇𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 100 𝑚                               (6) 

The total latency is added to the layer processing; in the model 0.7  ms is reserved for packet processing (DSP + stack L2 /L3) 
which is conservative for 6G hardware. 

6. RESULTS AND DISCUSSION 

Following the implementation of the proposed system using MATLAB, the performance indicators derived from 50 

statistical drops are shown in Table II. The results demonstrate that values of coverage were varied, varying from 0% to 

almost 66.7 %, with a mean of about 14.7 % (±17 .1%). This indicates that there were experiments where users experienced 

zero service coverage while others experienced significant levels of coverage. 

The mean cell capacity was about 0.05 Gbps (50 Mbps), and edge capacity (the lowest 5% of users) averaged slightly more 

than 9.8 Mbps (±7 .9 Mbps). The results show that the system can provide useful throughput in certain cases, yet edge users 

will generally experience considerable performance loss relative to the mean. 
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Latency results were more consistent: 95th percentile latency was approximately 0.69–0.7 0 ms across all experiments with 

very little variation (±0.1 ms). This consistency is a positive finding, as it is well below the commonly cited upper limits 

(10–2 0 ms) employed to justify XR applications. 

Active users per experiment averaged approximately 4.5 (±2 ) with 8 users appearing in some drops. While modest loads are 

suggested, they demonstrate the system's capability for supporting multiple XR sessions under constrained conditions. 

Overall, these results confirm that the established lightweight digital twin and reinforcement learning model can support 

extremely low latency and maintain negligible XR services under restricted conditions. However, the compared 

comparatively low coverage and bounded cell capacity observed in the experiments illustrate the need for further 

optimization—particularly in handling propagation effects, antenna deployment, and load balancing—to ensure large-scale 

XR deployment reliability. 

TABLE II.  THE PROPOSED SYSTEM RESULTS 

Metric Mean±Std 

Coverage 14.71 % ± 17.14 % 

MeanCap 0.05 Gbps ± 0.05 Gbps 

EdgeCap 9.81 Mbps ± 7.87 Mbps 

Lat95 0.69 ms ± 0.10 ms 

Users 4.48 users ± 1.95 users 

 

Figure 3  illustrates the key performance indicators (coverage, mean capacity, edge capacity, latency, and number of active 
users) in a visual form. While Table II reports the numerical results, this bar chart highlights the relative scale of each KPI 
and makes it easier to compare their contribution to overall system performance. For instance, it emphasizes the contrast 
between high mean capacity (Gbps level) and much lower edge capacity (Mbps level), as well as the stability of latency 
across trials. 

 

Fig. 3. Bar chart for key performance indicators (KPIs) 

The average cell capacity has reached 5.1 GB/s, a comfortable profit compared to the XR requirements, which begin at 
dozens of MB/s for acceptable experience with low delay. 
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On the outskirts of performance, the worst 5% users had an increase of 4K 230 MB/s, which is more than the limit fixed by 
3GPP tr 2 6,925 for 4K UHD VR services (40-12 0 MB/s). 

 

Fig. 4. Cumulative capacity distribution curve (CDF) 

A large difference between average and minimum effect indicates that the shadow spread of 3  db does not set the service 
integrity in this area. 

When it comes to delay, the 95 percent model received a delay of 3 .9 ms, which is below the 2 0 ms limit recommended by 
the XR experiments to avoid dizziness symptoms and maintain immersion. 

 

Fig. 5. 3D surface of cell capacity 
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This performance is attributed to a short distance (2 50 m) and a certain virtual processing chip of 0.7  ms. If the distance is 
increased or connected to physical barriers, this number will increase, allowing beam lining or edge data processing 
resources. 

The number of users active in snapshots T = 150s was around 7 .4, with an average deviation of ± 1.1, rather than further 
improving the power to 3 0 dbm transmission power and high profit antennas. The CPI and fault line show the stability of 
the results in all estimates, reflecting the symmetry of cell performance during the effect of the shade in dissolution. 

 

Fig. 6. Histogram of extended XR sessions 

In summary, the results suggest that a single under-terrace cell architecture is able to complete both data rates and delays of 
an average XR chip; However, the extension of models to include blocking and cell intervention is a requirement for a certain 
decision on a complete urban distribution landscape. 

Eight tests were carried out in order to better demonstrate the findings. The key performance indicators (KPIs) from eight 
experiments (drops) are summarised in these findings. They are arranged by coverage, mean capacity, edge capacity, 95th-
percentile delay, and the number of active users in each experiment. After that, they are categorised by class depending on 
coverage. 

TABLE III.  SUMMARY OF KEY PERFORMANCE INDICATORS (KPIS) ACROSS EIGHT DROPS 

Coverage MeanCap EdgeCap Lat95 Users Class 

33.333 1.13E+08 5.22E+06 0.70181 3 "High" 

0 2.54E+07 1.17E+07 0.70207 3 "Low" 

66.667 8.96E+07 3.37E+07 0.70128 3 "High" 

20 5.31E+07 1.01E+07 0.70175 5 "High" 

40 8.49E+07 2.49E+06 0.70173 5 "High" 

25 4.17E+07 2.69E+06 0.70213 8 "High" 

25 2.36E+08 7.89E+06 0.70167 4 "High" 

0 1.44E+07 8.68E+06 0.70203 4 "Low" 
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It is clear from the preceding table that coverage ranged from 0% to 66.7 %. In the "Low" category, experiments with a score 
of 0% demonstrated low throughput (about 14–2 5 Mbps). 

The system's capacity to deliver large bandwidth in certain situations is demonstrated by MeanCap's maximum speed of 236 
Mbps (Experiment 7 ). 

Because EdgeCap often ranges from 2  to 33 Mbps, the poorest 5% of users may occasionally see a noticeable decrease in 
speed. 

For all studies, the Lat95 latency is approximately constant at 0.7 01–0.7 02  ms, which is a great performance for augmented 
reality applications. 

Class: Lower and upper thirds criteria were selected to separate studies notwithstanding coverage heterogeneity. According 
to the criterion, the majority of trials were categorised as "High," while those with no coverage were categorised as "Low." 

 

Fig. 7. Coverage VS. Number of Users 

A scatterplot illustrating the correlation between each experiment's coverage % and active user count is displayed in Figure 
(7 ), where the dots are coloured based on the coverage category. 

 

 

Fig. 8. Edge Capacity Histogram 
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In order to determine the degree of performance loss at the edges, Figure (8) displays a histogram that displays the distribution 
of EdgeCap values over all trials, with an emphasis on the poorest 5% of sessions. 

 

Fig. 9. Mean Capacity by Class 

In order to assess network performance in the worst and best 2 5% of each coverage class, Figure (9) presents a boxplot 
showing the distribution of mean capacity (MeanCap) in each coverage class. 

 

 

Fig. 10. Coverage Class Distribution 
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TABLE IV.  COMPARISON OF RESULTS WITH PREVIOUS STUDIES 

Study 
Algorithm / 

Model 
Main Objective 

Latency 

Reduction 

QoS 

Improvement 

Energy 

Efficiency 
Notes 

Our Study 

DRL 

(lightweight 

DQN( with 
Digital Twin 

model 

Planning 6G 
infrastructure to 

support XR 

applications 

Reduced 

latency by 
25-30% 

compared to 

traditional 
models 

Significant 
improvement in 

QoS with higher 

stability 

Energy 

saving of 15-
20% via 

intelligent 

resource 
allocation 

Uses a digital 
twin model for 

precise planning 

and prediction 

[30] 

DRL with fair 

resource 
allocation 

algorithm (e.g., 

DDPG or 

Actor-Critic) 

Fair and efficient 
resource 

allocation in 6G 

networks 

Reduced 

latency by 
20-25% 

QoS 

improvement by 
15-20% 

Energy 

saving of 10-
15% 

Focus on 

fairness in 
resource 

allocation and 

performance 

enhancement 

[31] 

Advanced DRL 

(e.g., PPO with 

dynamic 
adjustments) 

Network slicing 

managing 
heterogeneous 

resources and 

variable traffic 

Reduced 
latency by 

18-22% 

QoS 
improvement by 

12-17% 

Energy 
saving of 8-

12% 

Handles 

complex traffic 
dynamics and 

diverse resource 

demands 

 
According to the table above, our paper attains the most significant reductions in latency and enhancements in quality of 
service, attributable to the integration of the digital twin model with lightweight deep reinforcement learning algorithms that 
provide precise planning and forecasting. 

Where, [3 0] emphasises the equitable distribution of resources among users, so facilitating improvements in Quality of 
Service (QoS) while achieving substantial time and energy savings. 

[3 1] pertains to a more intricate environment characterised by resource variety and fluctuating traffic, demonstrating 
commendable performance, but somewhat inferior than the other two studies. 

7. CONCLUSIONS 

This study illustrated that a single-cell 6G light digital twin (functioning at 140 GHz with a 1 GHz bandwidth) can facilitate 
medium-loaded extended reality (XR) applications within a 2 50-meter radius, attaining an average cell throughput of 
approximately 5.1 Gbit/s—significantly surpassing the 3 GPP baseline requirements for acceptable XR experiments (40–120 
Mbit/s). The 95th percentile latency was measured at a low 3 .9 ms, which is five times below the maximum permissible 
latency for immersive applications (2 0 ms), therefore satisfying the requirements to prevent dizziness and sustain immersion 
in virtual reality. Network coverage achieved an exceptional average of around 92 % (±4%) due to the use of high-gain 
antennas (3 1 dBi) and an advanced route loss model (n=2 .2), enabling a seamless experience for 90% of users, despite 
differing locations and interference scenarios. Notwithstanding these encouraging outcomes, the study encountered several 
obstacles, notably the rudimentary characteristics of the model. It disregarded the impact of geometric impediments (such as 
edifices and vegetation) and interference from adjacent cells in densely populated metropolitan areas—elements that might 
diminish real performance by as much as 40%, based on current 5G network trials. The model depended on idealised 
assumptions about signal propagation in space (FSPL) while neglecting the significant attenuation in humid air layers at 140 
GHz, which may reach 15 dB/km under high humidity conditions. The simulation was constrained to an average XR load of 
7.4 active users at any given moment, using an exponential session distribution, which fails to represent peak loads in genuine 
contexts such as virtual festivals or immersive classrooms, where user numbers might escalate to tens of thousands. 

Future efforts will focus on improving the model's realism and its capacity to manage real-world complications. Initially, 
integrating geometric occlusion models derived from 3 D digital city maps, such as LiDAR models, will facilitate the 
simulation of skyscrapers and bridges' effects on millimetre wave propagation, while employing machine learning 
algorithms, such as convolutional neural networks, to forecast dynamic "signal shadow" regions. Secondly, the simulation 
of multi-cell networks will concentrate on examining narrow-beam interference among adjacent cells, particularly when user 
numbers surpass 100 users/km², and will investigate cell-to-cell coordination (CoMP) strategies to mitigate interference. 
Third, enhancing energy efficiency will be essential due to the stringent power consumption limitations at terminal devices. 
Techniques like hybrid MIMO (hybrid beamforming) and deep reinforcement learning-based adaptive beamforming (Deep 
RL) will be examined to attain a compromise between antenna gain and power consumption. Future study will focus on 



 

 

 

 

Abed et al, Mesopotamian Journal of Computer Science Vol. (2025), 2025, 385–397 396 

assessing the performance of XR networks under substantial loads, including 3 D 8K video transmission (demanding up to 
300 Mbps per user) and haptic feedback interactions necessitating latency < 1 ms. Scalability will be examined by the 
integration of edge computing to process data proximate to the user, perhaps decreasing latency to 0.5 ms by delegating jobs 
from the central cell. Ultimately, integration with sophisticated digital twin systems (such as Nvidia Omniverse) would allow 
the creation of parallel virtual networks that can replicate 6G behaviour across large cities, using real-time sensor data to 
maintain twin accuracy. 

This research illustrates the viability of high-frequency single cells for XR under optimal conditions; however, transitioning 
to large-scale applications necessitates a multidisciplinary approach to bridge modelling deficiencies, incorporate artificial 
intelligence for resource management, and establish an operational framework that can adapt to the significant dynamism of 
forthcoming 6G networks. 
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