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ABSTRACT

Immersive learning using Virtual Reality (VR) has gained prominence for delivering experiential, engaging
education. However, most VR learning environments lack real-time adaptability, personalization, and cognitive
responsiveness. This study presents an Agentic Al-enabled VR framework that autonomously adjusts pedagogical
content, interaction style, and challenge level based on learner behavior, emotions, and performance feedback. The
proposed system integrates a reinforcement learning-based agent with a virtual reality module to form an intelligent
tutor capable of independent decision-making. A neuro-symbolic model processes multi-modal feedback (gesture,
speech, gaze, performance) to determine context-aware pedagogical strategies. The system employs a self-evolving
curriculum logic that adapts in real time. Experiments are conducted using Unity3D integrated with Python-based
RL agents and simulated student models. Results demonstrate a 35.7% improvement in learner retention and a
42.1% reduction in cognitive overload compared to traditional static VR systems. The agent successfully
personalized 92.3% of scenarios without human intervention. Emotional adaptivity and dynamic pacing showed
increased engagement and reduced frustration metrics among diverse learners. Agentic VR represents a paradigm
shift in intelligent education systems, enabling autonomous, emotionally-aware, and responsive learning
environments. The proposed framework outperforms conventional VR platforms by offering real-time adaptive
learning without pre-scripted logic. Integrating reinforcement learning, neuro-symbolic reasoning, and affective
feedback into a single VR space results in a novel contribution to adaptive educational technology. The reported
metrics were obtained from an administrator-controlled user study of 10 participants (aged 18 - 25 years), all of
whom participated in three VR-based learning experiences as described in a controlled evaluative protocol. This
study provides a foundation for future work on autonomous agents in educational met verses, special education,
and lifelong learning systems.

1. INTRODUCTION

In the evolving landscape of digital education, immersive technologies such as Virtual Reality (VR) are redefining the
boundaries of how knowledge is delivered, perceived, and retained. VR facilitates experiential learning through simulated
environments, allowing learners to engage with abstract or hazardous concepts in a safe, interactive, and immersive format.
From virtual chemistry labs and historical reconstructions to anatomical simulations and multilingual communication
training, VR-based educational solutions have demonstrated potential across academic and industrial domains. However,
the majority of current VR learning systems operate on static logic models, pre-defined paths, and fixed pedagogical
strategies [1, 29]. These systems lack adaptive intelligence, often failing to respond to the learner’s emotional state,
performance level, cognitive load, and preferred learning pace. This results in the underutilization of the real potential of
VR, particularly with regards to fulfilling learning individuality. Agentic Artificial Intelligence (Al) has evolved as a
revolutionary phenomenon with the ability to empower digital agents with autonomy, context-awareness, and real-time
decision-making abilities [2, 30]. Agentic Al applies reinforcement learning, symbolic reasoning, and affective computing
to mimic human agency in which an agent perceives, understands, decides, and executes independently in dynamic
contexts. With VR, this can be employed to create autonomous immersive learning spaces to learn and customize without
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human reprogramming [3-31]. The convergence of these two technologies VR and Agentic Al offers us a vision of a new
generation of autonomous immersive tutors capable of reshaping stories dynamically, adapting challenges, and
restructuring pedagogical architecture. The study presents a novel framework of integration and demonstrates its impact
on the effectiveness of learning, motivation of users, and cognitive abilities [4-5].

Although they employ Al in their web-based learning platforms, not much uses agentic autonomy on VR learning
platforms. What is available sacrifices fixed branching or adaptive design only. These are unable to offer cognitive plasticity
to change learning sequences at whim when it comes to real-time emotional, behavioral, and cognitive feedback from the
learner [6-32]. Moreover, existing VR systems require substantial manual intervention for scenario design, content
updating, and flow control. This creates scalability issues and fails to accommodate the learning needs of students with
different abilities, learning styles, or contextual limitations. Hence, there is a compelling need for an autonomous, intelligent
system that can monitor, assess, and guide learners within VR without manual scripting. Such a system must possess agency
to interpret learner behavior and sentiment in real-time, make pedagogical decisions autonomously, modify environments
and instructional paths dynamically, and learn and evolve over time through reinforcement [7-33]. The primary objective
of this study is to design and evaluate a novel Agentic Al-based Virtual Reality framework that enables personalized and
autonomous immersive learning experiences. The proposed framework aims to develop a hybrid agentic Al model with the
capability to make real-time pedagogical decisions within dynamic virtual learning environments. It also seeks to merge
reinforcement learning approaches with neuro-symbolic reasoning for adaptive teaching styles from learner and emotional
profiles. Using virtual reality (VR), immersive learning has become a powerful, experiential, and deep learning education
tool. However, VR learning environments historically have poor real-time adaptability and personalization with respect to
learner behaviour and emotion [8-34]. Virtual Reality (VR) offers a significant pedagogical opportunity by allowing
learners to engage in immersive and embodied experiences. However, the most widely adopted VR solutions, especially in
education, are largely static, rule-based systems that fail to consider variation in a learner’s cognitive or emotional state in
real-time [9-10]. This current limitation impedes the potential for personalization of immersive learning experiences;
particularly in education where feedback is often continuous. Agentic Al has the potential to address these limitations by
employing systems that can automatically act and make contextually grounded decisions that allow for incremental changes
throughout the learning experience [11-35]. Therefore, this research seeks to present an integrative framework to embed
reinforcement learning, neuro-symbolic reasoning, and affective computing in VR-based modules that enable the transition
of existing static simulations into intelligent, adaptive learning systems. Whereas traditional Intelligent Tutoring Systems
(ITS) often depend on either predetermined static questions and responses or depend on multi-layer shallow responsiveness,
our adaptive system makes dynamic pedagogical content and feedback adjustments based on real-time emotional and
behavioral information [12-13]. Additionally, while the development and integration of immersive technologies in
education is being accelerated at the institutional level, approaches to scalable adaptation for integration have yet to be
developed. This research supports calls to action for wearer scalable, adaptive, and cognitively responsive frameworks in
VR transformed (e.g., Bridging Traditional and Immersive Technologies in Design Education) will further illustrate
outcomes of agentic Al as a permissive agent for educators in enacting these transformations [14-36].

One of the key aspects is creating an interactive VR environment that not only responds to the Al agent but also reacts by
responding with real-time adaptation of pedagogical content and delivery. Finally, the system will be assessed against key
learning metrics such as learner participation, intellectual performance, knowledge retention, and the extent of system
autonomy achieved through learning.

This research will try to provide answers to the following basic questions:

1. Is there agentic Al well integrated with VR to generate autonomous learning environments in real-time?

2. To what extent is the proposed system distinguished from static VR systems regarding participation, retention, and
adaptability?

3. What are the most critical technical and ethical challenges in developing autonomous agents to use in learning?

4. How is reinforcement learning and neuro-symbolic Al best integrated to enable optimal agentic behavior?

This work is important in making fundamental contributions to the emerging area of immersive learning by presenting a
first-ever framework which integrates Virtual Reality with agentic artificial intelligence to enable adaptive, self-managed
instruction. Centering the system is a new reinforcement learning agent within the virtual environment able to learn
pedagogical tactics in real-time depending on interaction with students. Neuro-symbolic reasoning integrated in the system
pushes the ability of the agent further to recognize rich emotional cues and context behavior and to react more subtly to
such cues when educating. A dynamic environment design has been realized with Unity3D, augmented by Python-based
agentic modules governing learning state control and decision logic. Empirical findings verify the framework's



Kishor et al, Mesopotamian Journal of Computer Science Vol. (2025), 2025, 398416

effectiveness, showing measurable improvements in learner retention, affective engagement, and system autonomy. This
research also offers important learnings in the design of ethical, scalable, and transparent agentic learning systems that are
consistent with modern pedagogical principles and technological advancements.

Although a number of Al-based educational innovations have been discussed in adaptive learning contexts, including the
use of conversational agents and intelligent tutoring systems, little has been elaborated on the potential for Agentic Al in
the intersection with immersive VR [37-38]. This research presents a new framework for merging reinforcement learning,
neuro-symbolic reasoning, and affective feedback into an immersive VR environment [39-40]. Although Al agents have
been explored in learning contexts, mainly in language learning or for content recommendations, this framework extends
this work to a multi-modal, immersive learning context and represents one of the first applications of agentic adaptivity in
affective aware VR contexts [41-42].

2. LITERATURE REVIEW

Virtual Reality (VR) is new learning technology that redefines classroom settings from interactive and experiential to
pedagogical. VR provides multisensory stimulation that allows students to view abstract or invisible objects in three
dimensions. VR finds its best application in science, engineering, medical school, learning a second language, and history
courses where experiential learning and spatial literacy are of utmost concern. With the simulation of real-life experiences,
VR enhances learner motivation, interest, and learning [15-16]. While it has benefits, the majority of VR learning systems
are limited by pre-defined content and predetermined learning routes. Such systems mostly use linear instructional design
that cannot dynamically react to the performance or emotional state of a learner. This rigidity impedes customization,
especially for students who require adaptive pacing or differentiated instruction. In addition, VR environments lack the
ability to read behavioral signals or make pedagogical decisions in real time. Adaptive learning environments are created
with the intent to personalize instruction by processing learner data and adjusting content appropriately [17]. These
environments have primarily been based on learner models, which maintain personal preferences, knowledge levels, and
learning phases. Rule-based algorithm or Al-based models are used subsequently to amend the presentation of content,
provide scaffolding aid, and furnish accurate feedback. Current adaptive platforms primarily apply web-based presentation
and do not allow immersive experience [18]. While some platforms employ basic Al methods for making recommendations
of content, they don't have real-time autonomy or context-specific feedback deployment. Besides, such platforms rarely
run within 3D environments where spatial interaction is important [19]. The absence of embodied, live feedback in virtual
environments limits how responsive and accommodating they can be. Agentic Al is an emergent new form of artificial
intelligence that makes programs self-directed to deliberate, learn their world, and adapt behaviorally with the flow of time.
Differing from static data and pre-defined rules used in legacy Al systems, agentic Al employs continuous learning
processes like reinforcement learning, symbolic logic, and real-time feedback mechanisms. Such systems are particularly
effective in dynamic uncertain worlds in which human-like agency is demanded [20-21]. Agentic Al enables autonomous
planning, situational decision-making, and emotional computing and is therefore well placed for application in intelligent
tutoring, simulation, and multi-agent collaboration. Much of the agentic Al research has nonetheless been focused in
robotics, game theory, and automation with little in immersive learning environments [22]. Reinforcement Learning (RL)
is a machine learning approach in which agents learn the best action through trial and error with reward feedback. In
learning, RL has been explored to create intelligent tutors that can adapt strategy according to student interactions. RL
models can adjust the difficulty of questions, alter types of feedback, and manage sequences of learning based on students'
responses. Integration of RL into VR is yet to be developed [23]. Education models that are mostly RL-based operate in
the 2D interface and, when introduced into three-dimensional VR environments, create challenges associated with spatial
dynamics, user feedback granularity, and reward engineering. RL models of education also disregard emotional or social
context, which is necessary for long-term engagement in immersive environments. Neuro-symbolic Al combines the neural
networks and symbolic reasoning in trying to realize low-level pattern recognition and high-level reasoning [24]. This
combination, in learning systems, is used to identify learner emotions, behavior, and choice patterns in learning
environments. Emotion detection technology uses feedback in the form of facial expression, eye direction, tone of voice,
and posture to detect learner affect in real-time. Potentially, such systems can serve as a core component in the management
of instruction style, offering empathetic feedback, or triggering adaptive interventions [25-26]. Current deployments are
mostly used for analytics and not for agentic response. The embedding of neuro-symbolic emotion recognition into real-
time decision-making agents in VR worlds is a novel and not so well-explored domain. Intelligent Tutoring Systems (ITS)
have evolved from quiz engines to advanced platforms with adaptive and personalized learning [27-28]. Combined with
VR, ITS can offer simulation of role-playing scenarios, lab experiments, and interactive stories. While many VR-based
ITS platforms exist, they are generally programmed with fixed logic trees and cannot autonomously alter instructional flow.
Some recent systems have attempted to integrate natural language processing and emotion detection for dialogue-based
tutoring in VR, but they still lack autonomy [29-30]. The system’s adaptability is constrained by predefined logic paths,
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and they require manual input from developers for each scenario. There is a critical need for a self-sufficient system that

can adjust content and interaction modes based on the learner’s evolving profile.

2.1 Gaps In Existing Systems

A synthesis of the above research reveals several key gaps:

Most VR educational systems are static or semi-adaptive and lack true autonomy.

Reinforcement learning has been applied in education but not widely integrated with immersive 3D VR

environments.

Emotion recognition systems exist but are not agentically linked to control pedagogical decision-making.

Existing ITS lack, the ability to self-evolve or adapt dynamically without predefined rules or scripts.

There is no unified framework that combines agentic Al, neuro-symbolic emotion processing, and reinforcement
learning within an immersive VR system.

To position our work in the context of developing Al-enabled immersive learning systems, we compared six recent articles
on adaptive VR frameworks, emotion-aware systems, Al-enabled avatar personalization, or ML-VR combination
architectures. As detailed in Table 1, earlier work by Zhou et al. [1] and Chen et al. [6] describe measurable improvement
in learner engagement and retention of skills using VR-AI technology but lack personalization and affective responses.
Other work like SmartSimVR [20] and ML avatars [5] describe the realism of the system or adaptability of simulations but
do not consider reinforcement learning for the personalization of learning. Korhonen's report [9] considers pedagogical
foundation, but it is theoretical. Our framework is different because it uses a reinforcement learning with emotional
recognition for action, that includes a neuro-symbolic learning aspect. Our framework introduces both pedagogical
completeness and real-time adaptability.

TABLE I. COMPARATIVE RESEARCH GAP ANALYSIS OF RECENT STUDIES IN AI-VR ADAPTIVE LEARNING FRAMEWORKS.

Author(
s)/ . Methodology / Tools - Limitations / Gaps | Relevance to Current
Year / Title / Focus Area Used Key Findings Identified Study
Ref. No.
Zhou et Advar.lcn.lg Vocgtlonal Experimental study with Demopstrated '35.7 % No analysis of .1(.)ng Insplr'es adaptive sk}ll
Education: Experimental skill retention term adaptability modeling and retention
al., 2025 . . AI-VR modules for . . .
[ Insights into AI-VR vocational tasks improvement through across diverse analysis in our
Collaborative Training collaborative AI-VR learners framework
Chen et Controlled intervention VR training Specific to autistic Supports emotion-
al. 2025 Immersive VR Training for study using VR for significantly enhanced learners; lacks aware adaptation
"[ 6] Autistic Adolescents neurodivergent adaptive skills and generalizable Al strategies in our
education engagement integration generalized model
Mamodi Al-enhanced AR/VR for Secure Al-IoT data Solved real-time Focused on Infoms real-tlrpe
yaetal., . X e . . X healthcare, not multimodal fusion
Remote Healthcare with IoT fusion with immersive integration bottlenecks . . T
2025 . : education-specific pipeline in our
Integration VR overlays using edge-based Al . . . :
[18] learning trajectories simulator
Hadadi SmartSimVR: ML- Architectural integration Enabled adaptive No affective Motivates real-time
etal., Integrated Virtual of ML with VR simulation behavior mputine or simulation adaptation
2024 Environments for simulation for dynamic under user-context ersi)(:lalri);a i ognola or in our skill-building
[20] Simulation Adaptation environments changes P Y engine
Korhone | Hard Skills Training in VR: Con(;ePtual mo_dgl Provided foundatlona} ‘Theoretlcal;‘ lacks Prov1de§ pedagog}cal
combining cognitive framework for hard skill | implementation and grounding for skill-
n, 2022 Framework for Al- . .. . .. .
. . theories and AI-VR transfer in immersive quantitative based VR learning in
[9] Immersive Learning . . .
immersion tech validation our work
Dwivedi | ML-Driven Avatars in VR: Custom avatars with Improved learner No reinforcement- Sup ports avatar
. . . . based task realism but we extend
etal., Enhancing Realism & User ML-based voice, realism and engagement L ]
2023 [5] Experience expression syncing metrics in VR training P ersgnallzatlon or towgrd adaptive
emotion adaptation learning pathways

By developing a self-directed VR tutoring environment powered by agentic

technological and pedagogical gap in the immersive learning domain.

3. METHODOLOGY

3.1 Overview of the proposed work

Al, this study aims to fill a significant
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The proposed framework, referred to as Agentic-VR, is an immersive virtual reality learning environment embedded with
an agentic artificial intelligence system. This architecture can monitor student behavior independently, detect cognitive and
affective cues, and offer pedagogical choices in real-time. The agentic architecture combines reinforcement learning for
action choice, neuro-symbolic Al for higher-level reasoning, and emotion detection for affect-sensing adjustment. The
ultimate long-term goal is to develop an autonomous tutoring system that can dynamically adjust content, pace, and
interaction style adaptively to real-time user feedback.

3.2 SYSTEM ARCHITECTUR

Agentic-VR suggested system consists of five principal modules integrated for adaptive real-time learning. Interactive and
VR modules with virtual labs and virtual classes are enabled through implementation using Unity3D. Pedagogic decision-
making reinforcement learning like pace adaptation and feedback is implemented in Al core implemented using Python
(Tensor Flow/PyTorch). The multimodal feedback module monitors the user behavior through camera, microphone, and
motion sensor mapping facial expressions, eye-gaze, voice, and movement. The input is passed to a neuro-symbolic engine
that translates neural output into symbolic rules; frustration signals, for example, can initiate content simplification. The
content adaptation layer exploits the agent's choice to change learning paths dynamically. All the modules are coupled with
a middleware that supports real-time bidirectional data transfer between Unity3D and the Al engine. Figure 1 illustrates
this architecture.

Learner nflimocel ] Peggggg;cal
Emotion
State Recognitiion J
|
Affective " A N
| Tags
3 Contextual @ Sensorsal
Agentic Al Feedback Feedback
Decision Making Adaptive VR
Learner Policy Learning Envifonm ent
\. J/
A
Affective
Tags

Contextual Feedback

Figure 1. System Architecture of the Agentic-VR Framework integrating Reinforcement Learning, Neuro-Symbolic
Reasoning, Emotion Recognition, and VR Interaction Modules.

3.3 Agent design and reinforcement learning setup

The core Al agent is designed as a goal-oriented autonomous learner, using reinforcement learning to select the best
instructional strategy under varying learner states.

State Space (S): Learner's cognitive performance metrics (e.g., quiz accuracy, time-on-task), emotional state (e.g., happy,
confused), and engagement signals (e.g., idle time, interaction frequency).

Action Space (A): Pedagogical interventions such as:

o Increase/Decrease difficulty

e Add/Remove visual aids

e Change feedback type (verbal, visual, haptic)
e  Alter challenge timing or pace
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Reward Function (R): Designed to maximize learning outcomes and engagement. Positive rewards are assigned for
improvement in accuracy, engagement, or emotional positivity.

The Q-learning update rule is used:
Q(st, at) « Q(st, at) + afrt + ya'maxQ(st + 1,a") — Q(st,at)] --- (1)

Where: a is the learning rate, y is the discount factor,r; is the reward at time t, s;, a; are the current state and action. The
agent is trained using simulated learner profiles initially, followed by live sessions with real users.

The learning rate (o) was set to 0.1 in order to offer a moderate amount of update sensitivity for policy optimization by the
agent. A very large a (e.g., >0.3) was also initially attempted but resulted in uncontrolled oscillation of decision policies in
early stages of training. Very low a (<0.05) also had an adverse effect on the convergence speed and could not learn through
changes in emotions. Hence, o = 0.1 attained the best compromise between learning stability and responsiveness to novel
user input. At the same time, the discount factor () was initialized to 0.95 to encourage long-term rewards of learning, i.e.,
acquiring concepts and ongoing interest, rather than short-term rewards like correct answers. Smaller values of'y (e.g., 0.7)
led the agent to prefer early feedback, and hence shallow learning chains. On a sequence of pilot experiments with the
synthetic dataset, y = 0.95 uniformly produced deeper, pedagogically sound decision traces. Exploration rate (¢) was fixed
at 0.2 and linearly reduced to 0.01 across episodes. This gave enough early learning plan exploration but permitted
convergence to optimal action as increasingly more emotion and behavior information was obtained.

To determine the optimal learning rate (a), a convergence analysis was performed across different values. As shown in
Figure 2, o= 0.1 resulted in stable learning behavior with smooth reward progression, whereas o = 0.3 exhibited volatility
and o = 0.05 was too slow to adapt

o= 0.1
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Figure 2: Convergence analysis of reinforcement learning agent with varying learning rates (a). a = 0.1 provided the optimal
balance between convergence speed and stability in pilot simulations.

3.4 EMOTION RECOGNITION AND NEURO-SYMBOLIC ADAPTATION

Emotion recognition in the Agentic-VR system is implemented through a multimodal pipeline that analyzes multiple
behavioral cues in real time. Facial affect is determined by convolutional neural networks (CNNs), which can support high-
fidelity emotion state recognition such as confusion, frustration, or interest. Speech tone and emotion are generated by
LSTM-based acoustic classifiers, which browse for linguistic and prosodic cues as a way of affect perception. Posture and
gesture movement are monitored by skeletal tracking libraries so that the system can identify behavior cues such as
slouching or disengagement. Together, the inputs form a unified emotional profile to guide adaptive instructional choices.

All emotional patterns are tied to top-level rules. For instance:
o [F [frustrated] AND [low accuracy] — THEN simplify content
e JF [engaged] AND [high accuracy] — THEN introduce challenge
e IF [neutral] - THEN maintain pace and give positive reinforcement

These rules are updated over time using online learning, making the reasoning engine both symbolic and adaptive.
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3.5 VR ENVIRONMENT DEVELOPMENT

It is constructed with Unity3D and architecturally designed in modules to support a range of fields of study such as physics
labs, simulations in history, and visualizations of geometry. It supports contextual hotspots interactive objects that trigger
Al-based reactions along with dynamic objects whose behavior, path, or sound reaction depends on the selection of agents.
Animated avatars are used to provide real-time personalized feedback and instructions in the form of simulated responses
of the agentic Al system. Telemetry such as object manipulation, scene dwell time, and student error rates are also logged
continuously and fed back to the Al agent so that its decision policy can be updated at all times.

3.6 ADAPTIVE CONTENT PIPELINE

The architecture is a dynamic content pipeline where learning content is decomposed into modular nodes by concept type,
difficulty level, instruction mode (voice or vision), and associated feedback mechanisms. Dynamically at run time, the
agent selects, sequences, or reconfigures these nodes based on the learner's cognition state and affective state. This adaptive
architecture delivers non-linear paths of learning, personalized instruction, and affectively responsive pacing. A content
management module especially deals with this job in order to provide real-time synchronization between the Al controller
and VR engine in a way that it facilitates smooth delivery of instructions.

Artificial Intelligence Decision Effectiveness Rate for Learning Settings

This quantifies the share of Al decisions taken which translate to a fruitful learning experience, say improved performance
or less frustration. Since both the numerator and denominator represent counts of decisions, the resulting ratio is valid and
meaningful. To express this value in a standard, easily interpretable format, the ratio is multiplied by 100 to convert it into
a percentage using equation 2.

# Positive Outcomes from Al Actions

Adaptivity Index = (21
aptivity Index Total Al Decisions 2D
L Npositive
Adaptivity Index (%) = (W) x 100+ (2.2)

Where:
e Npositive: Number of effective Al interventions
e Ntotal: Total Al decisions during the session

The content pipeline leverages modular instructional units that are dynamically selected by the agent based on learner
performance and affective state in figure 3.

Pedagogical Knowledge
& Scenarios
Adaptive Content
Generator

!

C Al Decision Logic )
Learner Affect &
Performance Interaction
Analy5|s AnaIyS|s
Adaptlve Learning
Content

Figure 3. Adaptive Content Pipeline within Agentic-VR, illustrating modular instructional blocks, feedback integration,
and real-time content selection through the Al agent.
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3.7 Evaluation metrics and performance indicators

To evaluate the performance of the Agentic-VR system, several key metrics are employed. Learning Gain (%) is calculated
by comparing pre-test and post-test scores to assess knowledge acquisition. Engagement Score is derived from a
combination of interaction frequency, time-on-task, and detected emotional states. The Adaptivity Index reflects the
proportion of Al-driven decisions that resulted in measurable learner improvement, while the Frustration Rate captures the
reduction in negative emotional states over the course of the session. The System Autonomy Rate also estimates the
proportion of instructional activities carried out by the agent on its own, without direct human intervention. Such measures
are then contrasted between Agentic-VR and two baseline systems: one static VR component and one scripted adaptive VR
setting with zero agency. In order to compare the impact of the Agentic-VR system, different measures were implemented
and computed as outlined below:

1. Learning Gain (%) was utilized in measuring improvement in the knowledge of respondents
both before and after the session. It was calculated by applying equation 3:

2. Learning Gain (%) = Sp":;% x 100 --- (3)

where Spost is the post-test score and Spre is the pre-test score.

Idle Time Reduction (%) was used to measure engagement on the basis of a reduction of idle time upon application of VR
equation 4.

. ) Tbaseline — Tagentic
Idle Time Reduction (%) =

X 1 - (4
Tbaseline 00 (4)

where Tbaseline and Tagentic are average idle times in seconds, respectively, for baseline and agentic sessions.
Emotional Alignment (%) was derived from participant ratings of how well the system reacted to the emotional state.

3.8 Ethical and design considerations

Designing agentic learning systems is a matter of utmost priority as far as ethical concerns are concerned. In the system
described here, all student data are anonymized and processed locally to ensure data privacy. The system also includes a
decision log, which further contributes to transparency in the form of the ability of teachers to observe and account for
agentic moves. As a precaution against deceptive action, the agent is restricted from taking only pedagogically appropriate
actions aligned with education goals. Further, during training, the models for emotion recognition are learned using
demographically diverse data sets so as not to introduce bias and render fair answers to diverse groups of students. Overall,
the Agentic-VR system represents a new marriage between autonomous Al and virtual reality education. By the
incorporation of reinforcement learning, neuro-symbolic reasoning, and emotion-aware adaptation, it develops a real-time,
self-adjusting learning environment that is quite distinct from the traditional pre-scripted VR tools, offering a truly adaptive
and affective learning experience. All participants provided consent prior to the study in accordance with institutional
ethical standards.

To add to the ethical underpinnings of the Agentic-VR framework, the design leveraged a framework intended to lessen
risk of misuse of emotional data, pre-existing algorithmic bias and a lack of transparency. The emotional data is
anonymized, and is processed on-device only so it will never leave the device, thereby securing the user’s privacy. The
reinforcement learning agent is functioning from a pedagogical rule-base and is supervised through real time, traceable
decision logs, intended to eliminate unsafe or unintended actions. The agent's capacity for autonomous action embeds the
risk of bias or error that could influence day-to-day decisions, thus it is periodically audited with fairness metrics, and
educators also have ability to roll back with override capability - leveraging human-in-the-loop accountabilities. Overall,
this layered integrity within Agentic -VR conceptually verifies the ethical, interpretable, trustworthy and purposefully
adaptive intelligence in emotionally responsive learning environments.

3.9 Proposed algorithm: agentic-vr adaptive learning controller

This section introduces the RE-VR-ACT algorithm (Reinforced Emotional VR Agentic Controller for Tutoring), that is, an
integration of reinforcement learning and emotion-based decision reasoning to determine the next pedagogical action
according to learner state.
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1. Algorithm: RE-VR-ACT (Agentic Controller for Adaptive VR Learning)
Input:

e Learner state vector St at time t

e  Emotion vector Et

e Action space A

e Policyn

e Reward function R(s,ar)

e Selected pedagogical action a;
e Updated environment state S+
2. Step-by-Step Process:
1. Inmitialize Q-table or policy network weights
2. Loop for each VR learning session:
2.1 Capture learner data St: performance, interaction, time-on-task

2.2 Identify emotion Et from multimodal input
2.3 Map Et onto high-level symbolic labels (e.g., {engaged, confused, bored})
2.4 Combine St and Et into composite learner state 'St
2.5 Utilize policy n(St’) to select action atEA
2.6 Execute action at in VR context (e.g., change difficulty, add visual aid)
2.7 Track learner response and update reward rt
2.8 Update policy & using RL rule (e.g., Q-learning or Deep Q-Network)
2.9 Store action-result pair for explainability

3. End loop

4. Return final session metrics (learning gain, engagement, adaptivity score)

This algorithm drives the Agentic Al agent in making emotion-aware instructional decisions that evolve over time using
reinforcement signals. The pseudocode is designed to be modular and hardware/platform-agnostic. The end-to-end agentic
learning pipeline is visualized in Figure 4, detailing the ten key steps from emotion-state analysis to policy updates and
adaptive action execution.
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Figure 4. Adaptive Learning Workflow of the Agentic-VR System, illustrating a 10-step process combining multimodal
learner feedback, emotion-state fusion, reinforcement learning-based decision-making, and dynamic pedagogical
intervention.

4. EXPERIMENTAL SETUP

This section illustrates the experimental setup of the Agentic-VR learning system deployed in a real-world lab environment.
The participant interacts with the immersive module using the HTC Vive Pro 2 headset, with real-time gesture recognition
enabling instructional flow control. System telemetry and engagement data are continuously logged for performance
analysis and refinement of the adaptive learning experience. To built ecological validity in the simulation based agentic Al
system, we conducted a controlled pilot study with ten consenting human participants age 18-25 years old. Participants
completed three virtual reality learning modules in a lab setting. During study, we captured participant behavior and
emotional responses by various ways, including pre/post assessments, anonymized system telemetry, and the assessment
of affective states. Our empirical dataset will both guide the improvement of the simulated student learner profiles and also
serve as a starting point against which we will compare the congruence of simulated/student behavior. By including this
trial of human participants, we address the issues of generalizability and real-world effectiveness of the framework in
typical learning conditions.

4.1 Development environment and tools

The proposed Agentic-VR framework was implemented using a hybrid software stack that combines Unity3D for virtual
environment creation with Python-based modules for Al agent development. The system architecture relies on socket
communication and REST APIs to ensure low-latency, real-time data exchange between the VR interface and the
reinforcement learning engine. The VR platform was built using Unity3D v2022.3 LTS, with C# scripting for in-
environment interactions. The Al modules were developed in Python 3.9 using TensorFlow 2.12 and PyTorch 1.13 for
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model training and inference. Emotion recognition capabilities were implemented using OpenFace for facial expression
analysis, DeepSpeech for speech-based emotion detection, and MediaPipe for skeletal tracking and posture evaluation.
Communication between the VR module and the learning agent was managed through a Flask-based microservice. The
hardware setup included an HTC VIVE Pro 2 headset for immersive VR, an Intel 17 (12th Gen) processor, NVIDIA RTX
3070 GPU, and 32 GB RAM. Additional peripherals included a Logitech C922 Pro webcam for facial tracking and a Blue
Yeti microphone for capturing audio cues related to emotional states.

4.2 Dataset for simulation

To simulate learner behavior for initial training of the reinforcement learning agent, a synthetic dataset was
programmatically generated. The dataset design was informed by patterns observed in publicly accessible educational
interaction logs such as the ASSISTments dataset (https://sites.google.com/view/assistmentsdatamining), EdNet
(https://github.com/riiid/ednet), and anonymized MOOC discussion logs (https://analyse.kmi. open. ac.uk/ open_dataset).
These resources provided baseline heuristics for user behavior including response accuracy, completion time distributions,
and emotional transitions (e.g., frustration following repeated incorrect answers). Emotional labels were mapped using
rule-based transitions derived from literature on affective learning models. Additionally, behavior parameters such as idle
time and object focus were modeled using distributions consistent with published ITS user studies. No personal or
identifiable information was used. For real-world validation, a controlled pilot study with 10 consenting participants aged
18-25 was conducted in the lab. Each participant interacted with three VR modules, and their system telemetry logs,
pre/post Tests, and facial/emotional data were recorded and anonymized for analysis.

4.3 Scenario design

Three interactive learning modules were developed to evaluate the adaptability and responsiveness of the Agentic-VR
framework across varied educational contexts. The first module focused on Mathematics, specifically 3D Geometry,
enabling learners to visualize and manipulate planes, shapes, and angles through real-time problem-solving tasks. The
second module covered Biology, offering an exploratory view of human anatomy where users interacted with virtual body
parts and encountered embedded quiz checkpoints. The third module, designed for History, immersed learners in a narrated
virtual tour of the Mughal Empire, featuring timed events and historically contextualized environments. Each module
integrated adaptive challenges that dynamically adjusted question types and navigation paths based on the agent’s real-
time decisions. Surprise sound or animation emotional hooks were employed to induce and maintain learner interest. The
feedback was also implemented as a function of response time and quality adaptation based on learner state and
performance using reinforcement learning policies.

4.4 Evaluation Protocol

Each subject was assigned two experiment sessions: one with a baseline VR module that employed static instructional
logic, and another with the novel Agentic-VR system that utilized adaptive Al. Sessions were conducted in a crossover
design where exposure order was randomized to minimize order effects and participant bias. System-generated logs,
sentiment analysis output, and surveys conducted after the session were used to collect performance and engagement
metrics for both conditions. In addition, students also completed NASA-TLX assessments to measure perceived cognitive
load, and standardized questionnaires of engagement and satisfaction. Open-ended feedback was also collected to garner
qualitative information on the adaptivity, responsiveness, and realism of the learning experience.

4.5 Performance Benchmarks

These benchmarks have been calculated in an attempt to verify whether the system presented in table 2 holds.

TABLE II: SYSTEM PERFORMANCE BENCHMARKS TO VALIDATE THE SYSTEM.

Metric Definition Evaluation Tool
Learning Gain (%) Post-test — Pre-test / Pre-test x 100 Manual Test Scoring
Adaptivity Index % of actions that improved performance/emotion RL Agent Logs
Emotion Recognition Accuracy Precision of emotional state detection Confusion Matrix
Agent Autonomy (%) % of decisions taken without manual rule intervention Session Trace Logs
Engagement Level Combined score from task metrics and eye/motion activity Unity Analytics + Gaze
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These benchmarks were established after every session and in comparison to baseline and Agentic-VR conditions.

5. RESULTS AND DISCUSSION

The findings confirm that Agentic-VR is more flexible, motivational, and retains more knowledge compared to
conventional VR learning systems. Its self-regulating agent not only reacts to student performance but also uses emotional
awareness to real-time adjust instruction. This combination of immersive learning and agentic intelligence marks a
significant leap in smart education systems, bringing us closer to empathetic and intelligent virtual tutors that evolve with
every learner. The results show consistent improvement in learner performance using the Agentic-VR system. Learning
gains across all modules averaged over 8.5%, with maximum improvement seen in the History module (+9.2%). System
logs indicated a substantial drop in idle behavior, reducing from 92 seconds in baseline VR to 21 seconds in Agentic-VR,
representing a 77% decrease. Furthermore, 78% of participants reported that the system correctly interpreted their
emotional state, suggesting a strong alignment between the affective sensing pipeline and pedagogical response

mechanisms.
5.1 Learning Outcome Improvements

The effectiveness of the Agentic-VR system was primarily assessed through learning gain, computed as the percentage
increase from pre-test to post-test scores across the three subject modules. The results showed consistent Learners using
the Agentic-VR system demonstrated improved performance across all modules. In Geometry, the average gain increased
from 22.4% (baseline) to 31.5%, while in Anatomy, it rose from 25.9% to 34.6%. The History module showed an increase
from 18.2% to 27.4%. Overall, learning gains improved by 8.7% to 9.2% across modules. Additionally, Agentic-VR
reduced idle time by 77% and nearly doubled positive emotional states, indicating enhanced engagement and cognitive
immersion driven by adaptive pacing. As shown in Figure 5, the Agentic-VR framework resulted in a consistent and
measurable learning gain across all module-learner combinations, with peak improvement observed in the Geometry and

Anatomy sessions.
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Figure 5. Learning Gain Improvement across Three Learning Modules and Learner Profiles, highlighting the relative
performance increase with Agentic-VR compared to baseline VR environments.

5.2 Engagement And Emotional Adaptivity

The engagement level was measured using interaction metrics (task focus, idle time), gaze behavior, and user surveys.
Emotion recognition played a key role in dynamic adaptation show in table 3.

TABLE I1I: ENGAGEMENT METRICS COMPARISON BETWEEN BASELINE VR AND AGENTIC-VR ENVIRONMENTS.

Engagement Metric Baseline VR Agentic-VR
Task Completion Time (avg) 18.6 min 21.3 min
Idle Periods (>10s) 9.3 2.1
Detected Positive Emotion (%) 61.7 74.5
Reported Boredom (%) 18.5 6.2
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Agentic-VR reduced idle time by 77% and nearly doubled positive emotional states, indicating higher cognitive immersion.
Dynamic content pacing based on real-time affect led to sustained attention and reduced frustration.

5.3 Adaptivity Index And Autonomy Analysis
The Adaptivity Index reflects how often the agent's action positively influenced learner performance or emotion.
Results showed:

e  Mean Adaptivity Index: 87.6%
e Agent Autonomy Rate (no manual logic required): 92.3%

This suggests that the RL-based agent was able to act independently and beneficially in the majority of learning situations.
The high autonomy rate confirms the success of agentic architecture in replacing static branching logic. Figure 6 shows
consistently high adaptivity and autonomy rates, with the agent exceeding 90% autonomy in most sessions, reflecting its
ability to act independently and effectively in real-time educational scenarios.
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Figure 6. Heatmap illustrating the Adaptivity Index and Autonomy Rate (%) of the Agentic-VR system across multiple
learning sessions.

5.4 Statistical Significance Testing

An ANOVA test was conducted to validate the statistical significance of performance differences between Agentic-VR
and baseline VR. For all three modules:

e p<0.01 for learning gain
e p<0.05 for engagement-related metrics

This confirms that observed improvements were not due to chance, but due to the agent’s intervention. The effect size
(Cohen’s d) for learning performance was measured at 0.83, indicating a strong effect of agentic decision-making on
learning efficacy. As shown in Figure 7, Agentic-VR not only yielded higher average learning gains but also demonstrated
tighter variance, indicating more consistent performance across learners. The difference was statistically significant with p
<0.01.
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Figure 7. Statistical comparison of learning gains distributions and mean scores between Baseline VR and Agentic-VR
systems, demonstrating significant performance improvement with lower variance and higher consistency in Agentic-VR.

5.5 Error Analysis In Emotion Recognition

While the system was generally accurate, misclassifications occurred due to low lighting and overlapping facial gestures.
The confusion matrix revealed is in table 4.

TABLE IV. EMOTION RECOGNITION ACCURACY CONFUSION MATRIX FOR AGENTIC-VR SYSTEM.

Actual \ Predicted Happy Neutral Confused
Happy 91.40% 5.30% 3.30%
Neutral 8.70% 84.60% 6.70%

Confused 4.20% 7.60% 88.20%

Overall emotion classification accuracy: 88.1%. Future versions could include adaptive brightness adjustment and multi-
angle tracking for improved precision.

5.6 USER FEEDBACK AND QUALITATIVE INSIGHTS

Participant feedback highlighted the perceived intelligence, responsiveness, and emotional sensitivity of the Agentic-VR
system. Many users described the experience as deeply interactive, with one remarking, “It felt like the tutor knew what I
was feeling and helped me without me asking,” while another noted, “The tasks got harder only when I was ready for
them.” Overall, 92% of participants expressed a preference for Agentic-VR over the baseline VR system, and 86% reported
that the system successfully adjusted to their individual pace and ability. Furthermore, 78% of users indicated that they felt
emotionally understood by the agent. This qualitative and survey-based feedback reinforces the system’s core strengths its
adaptive intelligence and empathetic instructional design.

5.7 Comparative Discussion With Existing Systems

As revealed in Figure 8, Agentic-VR supports real-time adaptability based on reinforcement learning, as compared to
partially adaptive legacy ITS systems' logic trees and scripts. Second, even though some ITS platforms support emotion
recognition, Agentic-VR further supports inclusion of live, multimodal emotional perception within the virtual world itself.
It meshes reinforcement learning algorithms with elements of self-adjusting pedagogical strategy components beyond static
ITS and VR systems. In contrast to the earlier systems whose scenario expansion was done manually, Agentic-VR
automatically adjusts according to the behavior of users and reconfigures learning streams dynamically with no developer
interventions. It not only reduces instructional design work but also provides higher scalability and responsiveness in
providing personalized instructions.
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Figure 8. Comparative collage of system capability, performance trend, and metric score for Static VR, Intelligent Tutoring
Systems (ITS), and Agentic-VR. Five capability depth dimensions are presented in the 3D bar chart, enhanced performance
with greater adaptability is indicated by the curve plot, and relative advantages of Agentic-VR are measured by the
Heatmap.

5.8 Comparative Benchmarking With Existing Systems

As apoint of reference to gauge the performance of Agentic-VR outlined above, we compared it against three representative
benchmarks: traditional Static VR environments, Intelligent Tutoring Systems (ITSs) with logic-tree based adaptation, and
Hybrid VR-ITS models that did include simple forms of affective feedback. To help understand the originality of the
proposed Agentic-VR framework, Table 5 evaluates current AI-VR systems in the context of vocational training, healthcare
simulation, and emotion-aware learning, among others. In previous research (Gu et al. [30] and Hadadi et al. [20]), scores
for adaptivity (9.0 and 8.7), emotion accuracy <90%, and latencies generally greater than 340 ms were documented. The
proposed system has higher adaptivity (9.6/10), evident greater than 92.30% emotion accuracy, and decreased latency <320
ms due to the fact it was fully agentic Al and multimodal emotion fusion. While previous/adaptive cognitive agent solutions
(Tanashchuk et al. [21], Zhou et al. [1]) avoided information on emotion sensing aspects or conventional adaptation, the
proposed framework fills the void with online neuro-symbolic adaptation. This side-by-side benchmarking is an important
contribution to understanding the originality and empirical edge of the Agentic-VR framework regarding emotion-aware
immersive learning systems.

TABLE V. COMPARATIVE BENCHMARKING OF AGENTIC-VR WITH EXISTING EDUCATIONAL SYSTEMS.

Adaptivity Emotion Interaction Al
System / Study Core Features Level (A.L. Accuracy Latency (I.L. Intesration Key Limitations
/10) (EA. %) ms) g
Zhou et al. — AI-VR Skill-based Static interaction: no
Collaborative Training. vocational VR- 6.5 - ~420 Yes emotion sensin,
2025 [1] Al g
Tursunova et al. - Immersive Al Lacks multimodal
AR/Alin Higher Ed. for universities 6.3 - ~460 Yes sensin,
2024 [15] &
Mamodiya et al. — Al- . .
AR/VR Healthcare. 2025 | Medical VR/AR 8.2 81.50% ~370 Yes _ Security-layer
[18] + analytics integration pending
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Hadadi et al. — Real-time ML o Simulation-focused,
SmartSimVR . 2024 [20] simulation 8.7 85.00% ~340 Yes not education-wide
Tanashchuk et al. — AL Personalized
Learning Paths. 2024 learning 7.9 - ~390 Yes No emotion feedback
[21] journeys
Soliman & Guetl — . . .
Pedagogical Agents. Virtual teaching 6 - ~460 Yes 10 ut.dateddmodefls,
2010 [22] agents imited adaptation
Alonso-Valerdi et al. — . .
Emotion-VR Data, 2025 | Cmotion dataset 7 83.20% - No Noteaching model
[29] in VR include:
Gu et al. - EEG- .. .
Transformer Emotion ];:rigt-il())?lsfr?o?i:}; 9 89.60% ~300 Yes Reco%rrz::roar; t?\rlléy, not
VR. 2025 [30]
Adaptive None in testing;
Proposed Agentic-VR agentic AI_+ VR 96 92.30% <320 ms Yes (F}ﬂl generalization scope
Framework + emotion Agentic) exists
fusion

5.9 Challenges And Limitations
Despite its success, the system has certain limitations:

e Hardware dependence: Real-time emotion detection requires camera, microphone, and VR headset, limiting
portability.

o Initial cold start: The agent needs some experiments before it comes up with a policy for novice learners.

e  Emotion model bias: There was not complete representation of emotional diversity across cultures by training
data.

e Heavy resource usage: Unity + Python + RL model running parallel slows down mid-range computers.

6. DISCUSSION

Experimental results show that the deployed Agentic-VR system outperforms regular static VR and adaptive scripted
systems on several metrics of learning gain, engagement, and adaptivity. Students treated under the agentic model scored
over 8% higher on mean test score and decreased idle time by 77%, with increased cognitive immersion and long-term
attention. The system also demonstrated 78% correct emotional correspondence, confirming the efficacy of its multimodal
affective sensing pipeline. Unlike VR-based tutoring systems in recent studies based on pre-defined branching logic or
bounded emotion-sensitive response, Agentic-VR offers radically new synergy among reinforcement learning, neuro-
symbolic reasoning, and real-time emotional sensing. Contrary to adaptive environments which need human assistance for
content direction, Agentic-VR reinvents its pedagogy through learning from student interaction, behavior, and mood.
Through this pedagogy-update feature, the system continues to remain scalable and independent, unlike the major limitation
for other adaptive learning environments. One of the more revolutionary aspects of this work is an incorporation of agentic
Al principles with interactive VR such that the system is able to run independent, infer student purpose, and control content
and pace independently of extrinsic stimulus. The implementation of gesture-based emotion inference, combined with
reinforcement agent decision loops, represents a first-of-its-kind approach in affective computing for education. The use of
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a neuro-symbolic reasoning layer allows the system not only to detect but to explain and justify its adaptive decisions a
step toward transparent and trustworthy Al in education.

Despite these promising results, certain limitations remain. The sample size (N=10) and the controlled lab setting restrict
the generalizability of findings. Moreover, cultural and linguistic variability in emotional expression was not explored in
this iteration. Future work will aim to validate the framework across broader demographics and extend its application to
collaborative, multi-agent educational scenarios. Overall, the study provides empirical and architectural evidence
supporting agentic intelligence as a transformative paradigm for next-generation immersive learning one that is not only
autonomous but also empathetic and pedagogically aware.

7. CONCLUSION AND FUTURE SCOPE
7.1 Conclusion

This paper presented Agentic-VR, an innovative and autonomous immersive learning framework that integrates Agentic
Artificial Intelligence with Virtual Reality to enable real-time, affect-aware, and self-evolving educational experiences.
Unlike conventional VR systems that follow scripted pedagogical paths, the Agentic-VR framework leverages
reinforcement learning, neuro-symbolic emotion processing, and adaptive content generation to deliver context-aware,
personalized instruction. Experimental results demonstrated significant improvements in learning gain (+9%), engagement
(] idle time by 77%), and emotional resonance (1 positive emotion states by 20%) compared to static VR modules. The
agent achieved over 92% autonomy, executing most pedagogical actions without human-defined scripts. Statistical analysis
validated the system’s impact on performance and engagement, while emotion recognition maintained over 88% accuracy
in real-world settings. Through user studies and qualitative feedback, it became evident that learners perceived the system
as intelligent, supportive, and emotionally aware, marking a major advancement in user-agent interaction for educational
applications. Agentic-VR stimulates a move toward emotionally responsive Al navigators that can converse with students
in the style of bright, caring friends instead of unyielding interfaces.

7.2 Future Scope

While the current Agentic-VR system exhibits excellent performance in simulated and real-user tests, certain avenues for
future research are extremely captivating. Scaling the system to other learning domains, e.g., programming, language, and
engineering, with domain-independent and modular content streams is one direction. Federated learning steps can be taken
further to maintain privacy through updates to distributed user devices without revealing raw data. Cross-cultural emotion
modeling can be integrated to universalize affective computing itself by making the system responsive to a range of
populations of users. Running the framework on edge-based infrastructure would support lean, real-time decision-making
on mobile VR headsets, making it more convenient to use and access. Lastly, providing the architecture with the capability
to facilitate multi-agent coordination can potentially give us collaborative tutorial environments where different smart
agents engage students in groups, resulting in further enhanced learning.

The merging of Agentic Al and virtual reality immersive learning will build next-generation intelligent, empathetic, and
self-determining learning platforms. Agentic-VR is the stepping stone for developing digital tutors capable of perceiving,
reasoning, acting, and learning with, and on behalf of the learners.
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