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A B S T R A C T  
Due to the widespread popularity of digital images on the Internet, image-based steganography has 
become a widely adopted technique for embedding secret information into everyday visual content. In 
parallel, steganalysis plays a vital role in digital forensics and information security by seeking to uncover 
hidden content within these images. Although steganographic techniques—particularly those employing 
adaptive embedding strategies—have made significant progress, many steganalysis approaches still 
struggle to generalize effectively across different image types and embedding methods. This contrast 
highlights the need for more intelligent, flexible, and robust analysis frameworks. This review examines 
steganographic techniques for digital images and the application of metaheuristic algorithms in 
steganalysis. These algorithms are employed in tasks such as feature selection and parameter 
optimization. They can also function as classifiers themselves, thereby enhancing the detection of hidden 
information. We conducted a structured review of over 100 research articles, categorizing steganographic 
approaches based on their embedding domain (spatial and frequency) and steganalysis techniques 
according to the metaheuristic algorithms they utilize. Metaheuristic algorithms have demonstrated 
significant promise in improving the effectiveness of steganalysis by optimizing both feature selection 
and classification processes. However, their performance is often influenced by factors such as parameter 
tuning, initialization strategies, and the quality of extracted features. Recent studies also show a growing 
trend toward hybrid and ensemble-based techniques, which further enhance detection accuracy and 
reliability.

 

1. INTRODUCTION 

When it comes to concealing data, steganography involves the practice of hiding information within other data to transmit 
a secret message to the receiver using a method for embedding the secret message into its host medium, as shown in Figure 
1. It has been used since the early days of secret communication, but its importance has grown significantly with the rise of 
the Internet [1], [2]. In this paper, a complete survey of image steganography techniques is reported, including fundamental 
issues, classification aspects, performance evaluation, detection mechanisms, and the contributions of metaheuristic 
methods. Literature on metaheuristic algorithms (comprehensive reviews related to steganography and steganalysis) is still 
limited. To the best of our knowledge, our work is one of the first systematic reviews that covers the use of metaheuristic 
algorithms in both steganography (spatial and frequency domains) and steganalysis, thus addressing a clear gap in the state 
of the art. As the reviewed studies indicate, the use of metaheuristics to enhance the efficiency of data hiding in digital images 
has attracted considerable attention, and interest in this topic has been steadily growing in recent years. However, despite the 
increasing number of primary research articles, comprehensive reviews, especially those that jointly examine both data 
hiding and steganalysis, remain scarce. In the context of metaheuristics applied to data hiding, one of the few recent reviews 
was conducted by Melman and Evsutin (2023) [3], who presented a survey of image data hiding schemes (steganography 
and watermarking) based on metaheuristic optimization. They summarized publications from the past six years with respect 
to embedding purpose, optimization purpose, and metaheuristic type. They noted the trade-off between imperceptibility, 
capacity, and robustness. The results were mainly reported in terms of PSNR, SSIM, MSE, RMSE, NCC, QI. Although 
their review provides valuable insights into the applications of metaheuristics in image data hiding, it is limited to embedding 
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Fig. 1. Steganography and steganalysis. 

 

approaches without a detailed discussion of steganalysis methods or experiments on standard benchmark datasets. Beyond 
steganography and steganalysis, metaheuristic algorithms have also been successfully employed in several other domains, 
particularly in cybersecurity. For instance, Alyasiri et al. [4] applied Genetic Programming (GP), Grammatical Evolution 
(GE), and Cartesian Genetic Programming (CGP) to intrusion detection tasks and showed that evolutionary computation can 
evolve compact, human-readable rules that accurately identify both known and previously unseen attack types. Similar 
optimization approaches have been applied in fields such as malware detection, watermarking, and image processing, 
highlighting the versatility of metaheuristics as powerful optimization frameworks. These successes in external domains 
motivate further exploration of metaheuristic techniques within steganalysis, especially for improving generalization against 
novel or adaptive embedding schemes [5–7]. Building on these observations, our review provides several contributions: 

 Metaheuristic Role in Steganography and Steganalysis: This review highlights the role of metaheuristic 
algorithms in image steganography and steganalysis, focusing on their influence on embedding quality and 
robustness. Furthermore, it examines steganalysis techniques with particular attention to the classifiers employed 
and the evaluation of their performance. 

 Standard Datasets: We compare all methods on benchmark datasets such as BOSSbase 1.01 (grayscale), 18 

datasets from the UCI repository, and classical benchmark images (Lena, Baboon, and Pepper in grayscale and 

color) to ensure reproducibility and comparability. 

 Feature Extraction Table: In Table IV, we organize feature extraction methods according to the domain in which 

they are applied, helping researchers to identify and use relevant techniques easily. 

 Analysis of Performance Metrics: We provide a comprehensive overview of commonly used performance mea- 

sures (PSNR, SSIM, BER, AUC, etc.), discussing their advantages and limitations in the context of steganography 

and steganalysis. 

 Unified Presentation of Results: Instead of fragmented reporting, our review arranges results by embedding 

domain (spatial vs. frequency) and purpose (steganography vs. steganalysis), facilitating systematic comparison. 

 Emerging Trends: We highlight modern approaches such as hybrid metaheuristic frameworks, ensemble 
classifiers, and the integration of metaheuristics with deep learning (CNNs, GANs). 

 Novelty and Timeliness: By combining both data hiding and steganalysis in the context of metaheuristic 
optimization, our survey provides a broader perspective and highlights the most relevant details, making it a timely 

contribution to the field. 

 Future Directions: We include research recommendations covering quantum-resilient steganography, lightweight 

methods for resource-constrained devices, and cross-media steganography, pointing toward promising future 
research lines. 
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2. METHODOLOGY 

References included in this review were collected and selected by following several steps. The search was initiated using the 

fundamental key phrases “image steganography,” “steganalysis,” and “metaheuristic algorithms” in combination. For 

completeness, two direct search terms were systematically used: “steganography with metaheuristics algorithms” and 

“steganalysis with metaheuristic algorithms.” Searches were also broadened to encompass the spatial domain as well as the 

frequency domain by employing the keywords: “spatial domain steganography metaheuristic,” “frequency domain 

steganography metaheuristic,” and more specific queries such as “DCT/DWT/DFT steganography metaheuristic.” In 

addition, the well-known metaheuristic algorithms’ names were employed individually, including GA, PSO, ACO,GWO, 

and ABC, and given the context of steganography and steganalysis. A process of systematic review was used to identify, 

extract and appraise the included references. It included three main phases: If a paper met both the criteria in the first step, it 

was not necessary to follow the subsequent steps. Likewise, if it met the condition for the second step, the third will not be 

applied. 

1. Topic relevance 

Any article whose main source (journal or conference) contained any information related to image steganography, 

steganalysis, or watermarking in the context of metaheuristic optimization algorithm was regarded as relevant. We 

included this step to avoid missing out on specific obscure works on the topic, published in less highly ranked 

venues. 

2. Quality assessment 

Non-subject-matter sources were evaluated using ranking systems and indexing systems. 

• Journals: Papers published in journals indexed in Scopus were considered, with their quality further assessed 

using the Scimago Journal Rank (SJR). Journals ranked in Q1–Q3 were accepted, while those in Q4 were excluded. 

• Conferences: For the conference ranking in contrast to the journal ranking, several systems were used. In 

particular, we utilized ERA, CORE, and Qualis. Second, conferences were added that scored at least B−by 

                             two of these systems or higher. 

3. Citation-based validation 

The third step was done for the papers that did not fulfil the criteria of the first or second step, and these were 

assessed separately. Using Google Scholar, we calculated the mean number of citations/year. Papers that have ≥ 10 

citations per year were retained as influential, and the rest were discarded. 

 

Such a systematic three-stage approach ensured systematic identification from the literature and selection on stringent 

quality and impact criteria. This approach ensured the literature identified was representative of the field and academically 

valid, by topic-specific relevance, quality control through indexing and ranking systems, and confirmatory validation 

through citation impact. Accordingly, the review provided a comprehensive overview covering the research works in which 

image steganography and steganalysis algorithms were constructed and optimized based on metaheuristic optimization 

algorithms and applied in both spatial and frequency domains. The final set of references reflects the coverage and depth 

of the field, balancing methodological rigor and scientific relevance in the domain of secure data hiding. 

 

3. STEGANOGRAPHY 

Steganography is the art and science of hiding communication by putting secret information into a cover medium, 
including text, images, audio, or video. The word "steganography" comes from the Greek word for "covered 
writing"(στϵγαν ´o ς, γραϕ ϵιν) [8]. In this context, the cover object is simply a digital medium like an image, audio file, 
video, text, or even a network protocol that is used to carry the hidden information. After embedding, the medium takes the 
form of a stego object that conceals the hidden data while keeping the original content visually intact. Embedding denotes 
the process of hiding secret content within a cover, and extraction refers to retrieving that content from the stego object. 
Depending on the medium used, image, audio, video, or text steganography allows various ways to ensure the safe and 
imperceptible concealment of the data [9–11], as illustrated in Figure 2. The rapid evolution of steganography has driven 
substantial progress in steganalysis, resulting in a continuous arms race between the two [12], [13]. Even though 
steganography is commonly thought of as a modern security subject, it has a long history. One of the earliest known uses of 
this was in 440 BC, when Demeratus, the King of Sparta, concealed a warning message on a wooden block and coated it 
with wax to hide the writing [14]. Steganography today means hiding information in file formats with high redundancy. 
Most of the time, steganographic approaches are grouped by carrier media types, each of which has its own pros and cons. 
The embedding approach must be strong enough to protect the hidden message from possible man-in-the-middle assaults, 
no matter what medium is chosen. It is essential to differentiate steganography from cryptography. Cryptography protects 
the privacy of communication by changing the data that is sent into a form that unauthorized users can’t understand.  
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Fig. 2. Digital medium to achieve steganography 

 

Steganography, on the other hand, hides the fact that the communication is happening at all. In some cases, both methods 
can be used together. Cryptography can secure the message’s content, while steganography can protect its existence, 
providing additional security [15], [16]. 

3.1 Phases of Steganography 

Any steganography algorithm has to work through the following stages to effectively transmit a hidden message from a 

sender to a receiver: 

1. Sender: The sender’s main task is to include the hidden message into the digital medium and transmit it over a 
communication channel. 

1. Communication Channel: The communication channel refers to the physical or wireless medium that transmits 

the stego object (e.g., an image) containing the secret message. This transmission can occur over a network or 

through any alternative transmission medium. 

2. Receiver: This is the final phase of the steganography process, where the stego media are received and subsequently 

analyzed to reveal the hidden text sent. 

3.2   Important Characteristics of Steganographic Systems 

To be effective and practical, a steganographic system must meet specific basic requirements. Such features not only   make 
the secret data invisible but also ensure that the system can work with practical constraints. Below are the most commonly 
known requirements. 

1. Statistical Undetectability or Imperceptibility: Imperceptibility is the system’s capacity to hide information with- 

out appreciably changing the carrier file. The more secure the hidden communication, the less obvious the changes 

are. If the changes lead to perceptible distortions or statistical anomalies, the hidden information will be more likely 
to be detected. 

2. Capacity for Steganography: The term steganographic capacity refers to the Greatest Amount of data that can 

be concealed within a carrier medium. Certain file formats allow greater capacity without sacrificing security by 

offering more flexible or redundant places for data embedding. 

3. Robustness: Robustness determines the resistance of a steganographic system against intentional or unintentional 

distortions. Some steganographic methods are highly sensitive to compression or format conversion, while others 
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maintain the integrity of the hidden message despite modifications. Techniques that embed data in perceptually 

significant regions of an image or audio file tend to be more robust [17–19]. 

 

Fig. 3. Various Data Compression Techniques. 

 

3.3 Evaluation of Steganographic System Performance 

Metrics include PSNR, MSE, payload capacity, and visual fidelity. 

3.4 Data Compression 

Information compression is a key element of steganography, which has made it more practical and efficient to hide 
information in digital data. Rapid expansion of data transmission across networks has increased the need for secure and 
efficient information transfer. Lossless and lossy compression are the two main categories of information compression 
techniques (as shown in Figure 3 ). Compression reduces the size of files containing hidden data, facilitating storage 
and transmission without drawing unnecessary attention. By reducing file sizes, compression aids in preserving the 
natural appearance of the carrier medium, which is crucial for avoiding detection by unauthorized entities. In addition, 
compression techniques improve the utilization of bandwidth and storage resources, enabling faster and more cost-
effective data transmission. Whether using lossless or lossy methods, compression achieves a balance between 
preserving data quality and maximizing efficiency. Thus, compression functions are a vital component in steganographic 
systems, supporting secure and seamless hidden communication in many applications [20]. 

4. IMAGE STEGANOGRAPHY 

Images are commonly utilized in steganography because they allow for the covert embedding of data without visibly 

altering their appearance, making them ideal for safeguarding sensitive information [21]. Their widespread use and ease of 

sharing over the internet make them a practical medium for hiding information, especially in "noisy" areas with high color 

variations where modifications are less detectable [22]. The significant amount of bits in digital images allows ample space 

for embedding data, ensuring the original image remains visually unchanged [23]. Additionally, the non-causal nature of 

images allows random access to any pixel, enabling flexible and efficient data embedding By taking advantage of the 

imperfections in human visual perception, hidden data can remain undetected within digital media [18]. Images enable 

secure transmission of confidential data, as secret messages can only be extracted using a specific key, ensuring access is 

limited to the intended recipient [24]. Moreover, the versatility of image steganography in various applications contributes 

to its widespread adoption [25]. A deeper understanding of how data is hidden requires a closer look at the digital structure 

of images, including pixels, color channels, and bit depth, since these properties determine the possible locations and 

methods for embedding secret information. The following subsection presents these points.                                          
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4.1   Image Files 

As previously mentioned, the most common cover object for steganography is an image. The digital photo world is 

populated with many image file extensions, most of which serve a very specific purpose. Different steganography 

algorithms are used for these different image formats [26]. Computers represent images as an array of binary digits (bits), 

These values indicate varying levels of brightness across distinct regions of the image. This digital representation is 

organized in the form of a grid, and each position on the grid is traditionally called a pixel. On the web, the majority of 

digital images are formed by a rectangular grid of pixels and store color information about each pixel. The pixels are 

arranged in rows, side by side. “Bit depth” refers to the amount of binary digits used in a color model, which in turn 

determines how many bits it takes to describe one pixel. An 8-bit value is used per pixel in greyscale or black-and-white 

images, enabling the display of 256 shades of grey. On the other hand, color digital images typically use 24 bits and conform 

to the RGB (Red, Green, Blue) color model. By color space standards, bit depth is defined to be 8 bits per channel. This 

means that 8 bits are assigned to represent the intensity of each primary color: red, green, and blue. This allows each pixel 

to be capable of displaying more than 16 million colors. Background colors on the webpages are often expressed in 

hexadecimal values in six digits, or three pairs of hexadecimal values, representing red, green, and blue. For example, a 

white background is represented by the hex value FFFFFF, where FF stands for 100% red, 100% green, and 100% blue. In 

decimal, this is (255, 255, 255), and in binary, it’s (11111111, 11111111, 11111111). A total of three bytes that make up 

the white color, which is similar to how the color of a pixel is defined in an image [27]. However, keep in mind that the 

more colors you display, the larger your image file will be. As an example, a 1024×768 24-bit image has just over 2 million 

pixels; each pixel is made up of 24 bits, with 1 byte for red, 1 byte for green, and 1 byte for blue. This leads to a file size 

of over 2 megabytes. It is useful, if not essential, to perform file compression in order to facilitate and speed the transfer 

thereof [28], [29]. 

 

5.  DOMAIN-BASED CATEGORIZATION OF IMAGE STEGANOGRAPHY 

5.1 Spatial Domain Methods 

The spatial domain approach in image steganography involves embedding confidential information directly into the pixel 

values of the host image. Unlike techniques that require converting the image into any other domain, eg, frequency domain, 

this method works directly with the unaltered image data. Several techniques fall under the spatial domain category, each 

with its own strategy for hiding information. Among the most commonly used methods in this domain are the Least 

Significant Bit (LSB) technique and Pixel Value Differencing(PVD) [30], [31].Some other methods include Exploiting 

Modification Direction (EMD), Quantization-based methods, Gray Level modification, Multiple Bit-planes, and Palette 

based steganography techniques. Because they are simple and efficient, spatial domain techniques are considered to be the 

simplest and least difficult embedding and extraction techniques in steganography. Furthermore, spatial domain techniques 

exhibit a higher degree of compatibility with the human visual system (HVS), enabling greater embedding capacity 

compared to transform domain methods, while maintaining a reasonable level of image quality. Nevertheless, it is crucial 

to acknowledge that spatial domain techniques are without limitations. One significant constraint is the restricted capacity 

for embedding data. The length of the secret information that can be hidden within a cover image is often limited by the 

available pixel space in that image. Moreover, certain spatial domain methods may be susceptible to detection through 

advanced analytical techniques such as statistical steganalysis. Therefore, selecting an appropriate technique that strikes an 

optimal balance between security and the recoverability of hidden data is essential [32–43]. 

5.1.1  Least Significant Bit (LSB) 

The LSB method is one of the easiest, widely used, spatial domain steganography methods and has high capacity. It hides 

secret information in the least significant bits of a high-capacity host image. Since these bits carry minimal information, 

modifying them does not cause noticeable changes to the visual quality of the image, making it undetectable to the human 

eye. The secret data is directly embedded by replacing the least significant bits of the cover image without introducing 

significant distortion. However, this embedding process generates noise 50%, which is derived from the average bit 

embedding rate (that is, the number of embedded bits per pixel). Despite its simplicity and high capacity, the LSB technique 

has limitations. For example, when the stego value (the modified value) is compared to the plain value (the original value), 

modifications like incrementing or decrementing the value by one (e.g., a change of ±1 in the 1st LSB or ±4 in the 3rd 

LSB) It can leave behind traceable statistical violations. These violations make the stego-image susceptible to detection 

through advanced steganalysis techniques [44]. To achieve the effectiveness of the Least Significant Bit (LSB) 

steganography technique, several advanced versions have been developed. These versions include the following: 

1. LSB Matching Algorithms: LSB matching is a steganographic technique in which the decision to increment or 

              decrement a pixel of the cover image by one is made randomly, allowing embedding of message bits with minimal 
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              detectable changes [45]. 

 
Fig. 4. Gray level modification (GLM) Algorithm. 

 

2. Adaptive LSB Embedding: This technique modifies bits according to image features, including texture content 

or edge pixel characteristics. 

3. Optimized LSB Substitution: Optimized LSB substitution utilizes learning methods. 

4. Expansion to Up to 4 LSB Planes: It has been expanded to a maximum of 4 LSB planes to increase embedding 

capacity [46–54]. 

5.1.2  Gray Level Modification (GLM) Steganography 

Gray Level Modification (GLM) Steganography is a technique for representing binary data (0s and 1s) by modifying the 

gray level values of image pixels, rather than embedding or hiding the data. Pixels are chosen according to a predefined 

mathematical function, and their gray levels are adjusted to ensure they are all even. Then, each bit in the binary data stream 

is mapped as follows: If the bit is 0, the pixel value is left unaltered If the bit is 1, the pixel’s gray level is decremented by 

1 to make it odd, representing the bit value. This method provides better-quality stego images compared to other digital 

steganography techniques [55–57]. The process is illustrated in Figure 4. 

 

5.2 Transform Domain Methods 

In this approach, the secret to be hidden is embedded in the transform or frequency domain of the cover. It is a more difficult 

technique for embedding a message into an image than spatial domain methods. The domain of embedding techniques in 

which the message is hidden in transform coefficients is called transform domain embedding. Several algorithms have been 

suggested for these approaches, which are more complex than spatial domain methods [23]. For frequency-domain-based 

schemes, the initial step involves transforming images into the frequency domain, followed by embedding messages into 

the transform coefficients [58]. Various algorithms and transformations are applied to the image to conceal the message. 

The transform domain approaches are categorized into: Discrete Fourier Transformation (DFT), Discrete Cosine 

Transformation (DCT), Discrete Wavelet Transformation (DWT) Techniques [59]. The embedding and extraction process 

are computationally complex in transform domain-based algorithms, but they 

are robust to attacks and effectively maintain the stego object quality with no or minimum distortion [60]. 

 

5.2.1  Discrete Wavelet Transform (2D-DWT) 

The WT transforms spatial domain information into the frequency domain. Wavelets have been used in image 

steganography due to their capability of separating high-frequency and low-frequency information on a pixel-by-pixel 

basis. Discrete 

wavelet transformation (DWT) is applied instead of discrete cosine transformation (DCT) since it provides resolution by 

levels for images [61], [62], [18]: 

 LL (Low-Low): This is obtained by applying low-pass filtering to both the horizontal(rows) and 

vertical (columns)directions. 

 LH (Low-High) and HL (High-Low): The HL and LH sub bands are created by applying low-pass filtering in 

one direction and high-pass filtering in the opposite direction. 

 HH (High-High): The HH sub band is produced by high-pass filtering in both directions and contains high-

frequency components [62]. 

These sub-bands allow image steganography systems to embed data in less perceptually significant areas (such as HL, LH, 

or HH), thereby increasing imperceptibility and potentially enhancing robustness to compression and noise. The process 

can be iteratively applied to the LL sub-band to achieve multi-level decomposition, enabling finer control over embedding 

strategies. 
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5.2.1.1 Advantages of 2D-DWT in Steganography. 

 High imperceptibility: Embedding in high-frequency sub-bands minimizes visual artifacts. 

 Better robustness: Provides resistance to common signal processing attacks and image transformations. 

 Multi-resolution capability: Allows embedding at various scales depending on security and capacity 

requirements. 

5.2.1.2 Commonly Used Wavelets: 

Haar, Daubechies, Coiflets, and Biorthogonal wavelets are frequently employed due to their compact support and energy 

compaction properties. 2D-DWT-based steganography is often combined with other transforms (e.g., DCT) or optimization 

algorithms to further enhance performance in terms of capacity, imperceptibility, and robustness. 

5.2.2  Discrete Fourier Transform (DFT) 

The DFT is one of the frequency transforms widely used in steganography. The DFT of a digital image is a 2D DFT since 

a digital image can be described as a function of two variables, 𝑓 (𝑥, 𝑦). In the context of information hiding, it is possible 

to hide secret data in certain frequency coefficients by transforming an image to a frequency field such that no visual 

distortion is made on the image. This way, the hidden information can no longer be visible to human eyes while keeping 

the entire image quality. Hence, 2D-DFT offers a firm mathematical foundation for steganography, enabling the data hiding 

techniques to obtain transparency and security simultaneously by utilizing the frequency domain representation of digital 

images [63]. Where 𝑓 (𝑥, 𝑦) represents the image in the spatial domain (host-image), and 𝐹(𝑢, 𝑣) represents the image in 

the frequency domain (stego-image). 

Note that 𝑀 and 𝑁 represent the size of the image. 

 

 

(1) 𝐹(𝑢, 𝑣) =
1

𝑀𝑁
∑ ∑ 𝑒

 

−𝑗2𝜋(
𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)

  𝑓(𝑥, 𝑦)                                                            𝑁−1
𝑦=0

𝑀−1
𝑥=0 

 

 

u =  0, 1, . . . , M −  1 v =  0, 1, . . . , N −  1 

 

The inverse Discrete Fourier Transform (IDFT) is represented by the following equation. 

 

(2) 𝑓(𝑥, 𝑦) = ∑ ∑ 𝑒𝑗2𝜋(
𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)𝑁−1

𝑣=0
𝑀−1
𝑢=0  𝐹(𝑢, 𝑣)                                                               

 

 

𝑥 =  0, 1, . . . , 𝑀 −  1 𝑦 =  0, 1, . . . , 𝑁 –  1 
 

 

5.2.3  Discrete Cosine Transform (DCT) 

One important transformation in image processing is the discrete cosine transform (DCT), which offers numerous 
advantages: 

 It is able to carry energy in the very low frequency range for image data. 

 It can reduce the effect of blocking artefact, which is caused when boundaries between sub images become 
noticeable [64]. DCT coefficients play a crucial role in JPEG compression by dividing an image into segments 
of varying importance. This process transforms the image from the spatial domain into the frequency domain, 
allowing it to be separated into high, medium, and low-frequency components. 

Discrete Cosine Transform (DCT) is a mathematical operation that transforms an image from the spatial domain (pixel 
representation) to the frequency domain. Most of the signal information is concentrated at low frequencies, while high 
frequencies can often be neglected with minimal distortion [65]. Steganography algorithms that use the Discrete Cosine 
Transform (DCT) typically select specific frequency coefficients to hide information. The coefficients are selected based on 
their perceptual significance, favoring those that are less noticeable to the human eye. The most commonly used coefficients 
are usually the low-frequency components, as they carry most of the image’s energy and are less likely to cause visible 
distortions [66]. The image is divided into 8 × 8 pixel blocks. The 2D-DCT is then applied to each block from top to bottom 
and left to right, transforming pixel data into frequency components, producing the following: 
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 DC (Direct Component): DC (Direct Component): This coefficient represents the block’s average intensity, 

calculated by summing the 64 pixel intensities and dividing by 8. 

 AC (Alternative Components): The remaining 63 coefficients represent intensity variations between pixels in the 

block. These are divided into low and high frequencies: 

1. Low frequencies: are used to create a blurred approximation of the original image, containing essential 

structural information. 

2. High frequencies: Contribute to fine details, such as edges and textures [67–71]. 

Two-Dimensional Discrete Cosine Transform (2D-DCT): 

An extension of DCT for 2D image blocks. 

 Forward 2D-DCT The mathematical expression for the forward 2D-DCT is defined as [72]: 

(3) 𝐺(𝑓, 𝑒) =
2

𝐿
𝛼(𝑓)𝛼(𝑒) ∑  𝐿−1

𝑜=0 ∑  𝐿−1
𝑤=0 𝑔(𝑜, 𝑤) cos (

𝑓𝜋

2𝐿
(2𝑜 + 1)) cos (

𝑒𝜋

2𝐿
(2𝑤 + 1))                              

 

 

In this formula, 𝑓, 𝑒 =  0, 1, 2, . . . , 𝐿 −  1, and 𝑓(𝑜, 𝑤) denotes the intensity value of the pixel located at coordinates 

(𝑜, 𝑤).and 𝐶(𝑘) is the scaling factor defined as: 

(4) 𝛼(𝑘) = {
1

√2
, if 𝑘 = 0                                                                        

1, otherwise                                                                     
 

 

Inverse 2D-DCT (IDCT) To recover the original function, the inverse 2D-DCT is given by [70]: 

(5) 𝑔(𝑜, 𝑤) =
2

𝐿
∑  𝐿−1

𝑓=0 ∑  𝐿−1
𝑒=0 𝛼(𝑓)𝛼(𝑒)𝐺(𝑓, 𝑒)cos (

𝑓𝜋

2𝐿
(2𝑜 + 1))cos (

𝑒𝜋

2𝐿
(2𝑤 + 1))                     

Here, 𝑓, 𝑒 =  0, 1, 2, . . . , 𝐿 −  1. 

The forward and inverse DCT techniques convert spatial pixel data to the frequency domain and transform it to that 

of its analog counterpart in the spatial domain. Representation results in successful image reconstruction. 

 

                                                      TABLE I : STANDARD JPEG  QUANTIZATION  TABLE  FOR  LUMINANCE. 

 

 

 

 

 

 

 

 

 

16 11 10 16 24 40 51 61 

12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 51 87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 113 92 

49 64 78 87 103 121 120 101 

72 92 95 98 112 100 103 99 
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                                                                  TABLE II  : STANDARD  JPEG  QUANTIZATION  TABLE  FOR  CHROMINANCE 

 

 

 

 

 

 

 

 

 

In Table I, the value 16 represents the DC coefficient. The remaining values correspond to AC coefficients [73]. 

5.2.4  JPEG Compression 

JPEG (Joint Photographic Experts Group) is among the most well-known standards that uses lossy image compression 
techniques. It significantly reduces image file size by eliminating redundant and less perceptually significant data while 
maintaining acceptable visual quality. JPEG compression is particularly important in steganography, as it defines the 
structure and behavior of transform-domain embedding techniques. The JPEG compression process involves several key 
steps: 

1. Color Space Conversion: The source image is converted from the RGB color space to YCbCr. In this representation, 
the Y component indicates luminance, while the Cb and Cr components represent chrominance. Since the human eye 
is more sensitive to changes in luminance than in chrominance, we can subsample the chrominance components 
commonly in 4:4:4, 4:2:2, and 4:2:0 formats without noticeable loss of quality. 

2. Block Splitting: The image is split into non-overlapping blocks ( usually 8 × 8 pixels). 

3. Discrete Cosine Transform (DCT): Each 8 × 8 block is transformed using 2D-DCT. This transforms the image’s pixel 
values in the spatial domain to the coefficients in the frequency domain, with the top-left coefficient being the DC 
(low-frequency) component and the others being AC (high-frequency) components. 

4. Quantization: DCT coefficients are quantized using a standard quantization matrix. Higher frequency coefficients are 
more aggressively quantized, resulting in data loss, which contributes to compression. Quantization is the primary 
source of loss in JPEG compression. [74], [64]. 

5. Entropy Coding: The quantized coefficients are reordered in a zig-zag pattern to group low-frequency components 
together, then compressed using Huffman or arithmetic coding [75], [76–78]. 

5.2.4.1. Advantages. 
 

 High compression efficiency: Reduces file size significantly, making it suitable for transmission and storage. 

 Suitable for frequency-domain embedding: Enables use of robust embedding methods in the DCT domain. 

 Widespread format: JPEG is a universally accepted image format, increasing the covertness of steganographic 
methods. 

5.2.4.2.  Challenges. 
 

 Lossy nature: Makes it difficult to embed and reliably extract hidden data without degradation. 

 Steganalysis vulnerability: Frequency-domain artifacts can sometimes be detected by statistical analysis tools 
if not carefully designed. JPEG compression-based steganography often uses advanced techniques like matrix 
encoding, syndrome-trellis codes, or combines with wavelet and optimization-based methods to enhance 
imperceptibility, capacity, and robustness. 

17 18 24 47 99 99 99 99 

18 21 26 66 99 99 99 99 

24 26 56 99 99 99 99 99 

47 66 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 
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5.2.5 JPEG Steganography 

In most steganographic systems, data is typically embedded within the nonzero discrete cosine transform (DCT) coefficients 
of JPEG images. The primary JPEG steganographic methods can be classified as follows: 

 nsF5 Algorithm: The nsF5 algorithm is an enhanced version of the original F5 steganographic algorithm. It was 

specifically designed to address the issue of shrinkage. In this problem, DCT coefficients of ±1 can be reduced to 

zero during data embedding, resulting in the loss of hidden information. To avoid this, nsF5 utilizes wet paper 

codes, which prevent the modification of zero-valued coefficients, thereby maintaining embedding accuracy and 

improving overall efficiency. The algorithm embeds hidden data by altering the least significant bits (LSBs) of 

non-zero AC DCT coefficients in unaltered JPEG objects. The embedding process is guided by syndrome coding, 

which ensures that only valid coefficients are altered, thus minimizing both perceptual and statistical distortions. 

Moreover, nsF5 employs matrix encoding to further reduce the number of changes required, enhancing resistance 

to steganalysis. In more recent developments, syndrome-trellis codes (STCs) have been adopted in place of wet 

paper codes. These codes provide higher embedding efficiency, particularly at lower payload rates. By combining 

theoretical rigor with practical effectiveness, nsF5 remains a robust and reliable method for secure, imperceptible 

data hiding in JPEG images [79]. 

 

 UERD Algorithm: Another steganography embedding model, known as UERD, aims to minimize the 

detectability of the hidden data to the observer by minimizing the effect of embedding on the statistical properties 

of the cover data. This is achieved through a post-analysis of specific parameters of the DCT coefficient at the 

mode level, block level, and surrounding region level. Therefore, the analysis can indicate where “noisy" regions 

would be suitable for embedding while maintaining statistical invariance of features such as file histograms. In 

contrast, “wet" (with predictable statistics) regions carry a higher risk of detection. Notably, UERD does not rule 

out the possibility of embedding in DC mode or zero DCT coefficients while security is offered due to statistical 

profiles. It maintains uniformity in the relative changes of certain calculated statistical parameters due to 

embedding, and, like nsF5 and J-UNIWARD, it utilizes syndrome-trellis codes (STC) to embed message bits in 

the test values [80]. 

 

TABLE III :  COMPARISON OF STEGANOGRAPHY TECHNIQUES BY DOMAIN 

 

 

 

 

 

 

 

 

 

 

 

 

6. STEGANALYSIS AND DETECTION METHODS 
Steganalysis is the practice of detecting hidden information. To achieve this, researchers have developed various tools and 

approaches. In practice, the field has two complementary components: artistic, where features or anomalies indicating 

hidden information must be found, and scientific, which is the careful construction and application of analysis tools to 

unearth or extract the hidden information. A steganalysis algorithm is considered to be good when it accurately detects the 

hides and recovers it in some cases. The main purpose of steganalysis is to disclose hidden messages in the carrier and, 

accordingly, improve data security and integrity. In other words, steganalysis is a blend of possibly creative skills together 

with sound technical knowledge to reveal hidden information [81–83]. Steganographic attacks, also known as stego-attacks, 

are any techniques that an adversary can apply to reveal, extract, modify, or destroy hidden data in a stego object. The 

nature and complexity of these attacks depend on the information available to the attacker and the specific objectives they 

aim to achieve. There are seven primary attack strategies used to detect hidden data within steganographic objects [84–87] 

and are generally classified into the following types: 

Technique Domain Payload Quality Robustness Ease 

LSB 

PVD 

Spatial High 

Medium 

High 

- 

Weak 

- 

Simple 

- 

DCT 

DWT 
DFT 

Frequency Medium 

- 

- 

High 

- 

- 

Secure 

- 
- 

It’s easier than other frequency domain 

techniques. 

Complex 

- 
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1. Stego-Only Attack: The attacker only has access to the stego file containing hidden data. They analyze the file 

using trial-and-error methods or statistical techniques to detect anomalies or extract hidden information. 

2. Known-Cover Attack: The attacker has access to both the original cover object and the stego object. By comparing 

the two, the hidden data can be extracted through analysis of the differences. 

3. Known-Message Attack: The attacker already knows the hidden message. By analyzing the stego object 

containing this known message and comparing it with similar files, the attacker can infer patterns or reconstruct 

the cover object. This information can later be used to detect or extract future hidden messages. 

4. Known Steganographic Algorithm Attack: The attacker possesses complete knowledge of the embedding 

technique being used, but does not possess the cover object or the hidden message. This information can be 

exploited to simulate the embedding process or to train steganalysis tools tailored to that particular method, 

increasing the likelihood of successful detection. 

5. Chosen-Stego Attack: The attacker has access to both the stego object and the steganographic algorithm. This 

allows for a detailed analysis of how the data was embedded and increases the chances of successful extraction.            

6. Chosen-Message Attack: A specific message is deliberately embedded into a cover object under the attacker’s 

control. This allows researchers or attackers to study the embedding behavior of the algorithm and develop 

method for detection or extraction. 

7. Known-Stego Attack: The steganographic algorithm, as well as its purpose, is available to the attacker. This 

makeshe attack particularly dangerous, as the attacker can exploit the knowledge of the algorithm to directly 

extract the hidden message.                    

6.1 Two Main Types of Steganalysis Based on Analysis Objective 
Steganalysis refers to the process of detecting hidden information within a stego object. Depending on the goal of the 

analysis, steganalysis can be broadly categorized into two main types: 

 

6.1.1  Targeted Steganalysis 

Targeted steganalysis is designed to detect steganographic content generated by a specific embedding algorithm. It oper- 

ates under the assumption that the analyst knows or can guess the steganographic method used. 

6.1.2 Blind (Universal) Steganalysis 

The field of blind or universal steganalysis seeks to detect hidden content without any knowledge of the steganographic 

method or embedding schema. It is more challenging but broadly applicable. 

6.2  Feature Extraction 

Feature extraction is a crucial step in steganalysis, the process of detecting hidden information within stego media. It 

involves identifying and quantifying measurable attributes from cover or stego images that can reveal the presence of 

hidden data. These features serve as the input to classification models that aim to distinguish between clean (cover) and 

altered (stego) content. 

6.2.1   Purpose and Importance:  The success of steganalysis largely depends on the quality and relevance of the 

extracted features. Well-designed feature sets can capture subtle statistical anomalies or structural modifications 

introduced by data embedding, even if those changes are imperceptible to human vision. 

6.2.2  Types of Features Extracted: 

 Statistical Features: Include measures such as mean, variance, skewness, kurtosis, and histogram statistics of 

pixel values or transform coefficients. 

 Frequency-Domain Features: Derived from DCT, DWT, or FFT, these features analyze the frequency 

components of an image to detect unusual patterns caused by embedding. 

 Co-occurrence Matrix Features: Capture spatial dependencies and relationships between neighboring pixels. 

 Common features include contrast, homogeneity, correlation, and energy. 

 Image Noise Residuals: Many embedding operations disturb the natural noise distribution of an image. 

Analyzing these residuals can help detect anomalies. 

 Edge and Texture Features: Extracted using operators like Sobel, Prewitt, or Gabor filters, these features help 

detect distortions along edges or in textured region. 

6.2.3 Feature Extraction Methods: 

 Handcrafted Feature Extraction: Based on domain knowledge and statistical analysis. Examples include the 

SPAM (Subtractive Pixel Adjacency Matrix) model and SRM (Spatial Rich Model). 
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 Automated Feature Learning: Deep learning methods (e.g., Convolutional Neural Networks) automatically 

learn relevant features during training, often outperforming handcrafted approaches in large-scale datasets. 

6.2.4 Use in Classification:  Once features are extracted, they are fed into classifiers such as Support Vector 

Machines (SVM), Random Forests, k-Nearest Neighbors (k-NN), or deep neural networks. The classifier learns 

to distinguish between cover and stego samples based on feature patterns. 

6.2.5  The extracted features must be: 

 The features need to be affected by the data hiding process. That is, the stego-image and the cover-image must 

have relatively distinct features. 

 The features must be flexible enough to work effectively with various image formats and data hiding 

techniques. 

 

TABLE IV  THE FOLLOWING TABLE ILLUSTRATES SEVERAL FEATURE EXTRACTION METHODS 

 

Name Dim Domain Notes 

CHEN 486 JPEG CHEN is a feature-extraction technique for JPEG steganalysis that uses Markov processes to 

model both inter- and intra-block correlations among JPEG coefficients, and it can subsequently 
be used for detection or classification tasks [88], [89]. 

CC-CHEN 972 JPEG It’s an enhanced version of the CHEN model, enhanced by Cartesian calibration [90], 

[91]. 

LIU 216 JPEG All 216 features proposed are concatenated. 

CC-PEV 548 JPEG Cartesian-calibrated PEV feature set [92] 

SPAM 686  Spatial It consists of features based on differences between adjacent pixels using first-order 

and second-order Markov chains. The SPAM feature vector comprises 686 features in 
the second-order Markov process.[93], [94], [95]. 

CDF 1,234 Both has been proposed as the union of SPAM and CC-PEV[96],[97]. 

CC-C300 48,600 JPEG  First high-dimensional rich model for JPEG steganalysis [98] ,[90]. 

CF∗  7,850  JPEG the 7850-dimensional CF∗ features are formed by co-occurrence matrices [99]. 

CC − JRM ∗ ∗  22,510  JPEG The CC-JRM steganalysis feature, with 22,510 dimensions, is constructed from a 

sub-model system that combines the joint distribution of the frequency and spatial 

domains[100]. 

SRM  34,671  Spatial The 34,671-D Spatial Rich Model (SRM) feature is based on a rich model in the 
spatial domain [101]. 

SRMQ1  12,753  Spatial it’s a spatial domain rich model with the fixed quantization q = 1c [102]. 

J+SRM  35,263  Both Union of SRMQ1 and CC-JRM. 

CSR  1,183  Spatial Content-Selective Residuals (targeted at S-UNIWARD). 

DCTR  8,000  JPEG FAST features from DCT residuals. 

maxSRM  34,671  Spatial SRM with selection channel knowledge 

SCRMQ1, 

CRMQ1  

18,157  Spatial / 

Color 

Spatial & Color Rich Model (Tc=3 truncation). 

PHARM  12,600  JPEG PHARM project features. 

CFA-aware 

CRM  

 

5,514 

4,146 

10,323 
 

Spatial/Color CFA-aware Color Rich Models. 

GFR  17,000  JPEG Gabor Filter-based JPEG Rich Model. 

sigma-features  1,980  Spatial Selection-channel aware PSRM variant. 

SCA-DCTR 

GFR 
PHARM 

various  JPEG Selection-channel aware variants. 

PhaseAwareNet  __  JPEG JPEG-Phase-Aware Net (Caffe /MatConvNet). 

SRNet  __ JPEG/Spatial Tensor Flow implementation. 

JIN-SRNet  __ Spatial/JPEG Pytorch pretrained SRNet. 



 

 

 

 

Khalil et al, Mesopotamian Journal of Computer Science Vol. (2025), 2025, 417–442 430 

7. Metaheuristic Algorithms in Steganography 

Metaheuristic algorithms are designed to address specific problems, whereas metaheuristic algorithms are generalized and 

problem-independent, This enables them to be used for a variety of real-world optimization problems. Metaheuristics 

represent an advanced form of heuristics in which researchers have developed generalized optimization techniques inspired 

by biological and natural processes. However, these algorithms do not guarantee the optimal solution, but aim to achieve 

near-optimal results [103], [3]. A short overview of the metaheuristics is presented to tackle various optimization 

challenges. Its classification is illustrated in Figure 5. 

 

 

 

 
Fig. 5. Classification of Metaheuristic Algorithms. 

7.1 Applications in Image Steganography 

Metaheuristic algorithms are employed in various stages of steganography, including: 

 Pixel or block selection: Choosing the most suitable pixels or blocks for embedding to maximize imperceptibility. 

 Payload distribution: Optimizing how and where the secret bits are distributed across the image. 

 Transform coefficient tuning: Adjusting DCT/DWT coefficients to minimize distortion. 

 Feature selection: In steganalysis resistance, selecting discriminative features for training stego detectors. 

7.2 Categorization of Metaheuristics 

Metaheuristics can be categorized in various ways, such as based on their operation or their underlying concepts. In terms 

of operation, metaheuristics are divided into two main groups [104]: 

1. Single solution-based approaches, such as Tabu Search (TS), Simulated Annealing (SA), and Variable Neighbor-

hood Search (VNS). 

2. Population-based approaches, such as Genetic Algorithms (GA), Artificial Bee Colony (ABC), Particle Swarm 

Optimization (PSO), and Ant Colony Optimization (ACO). 

7.3 Key Characteristics of Metaheuristics 

 Exploration and Exploitation: Efficiently balances global exploration with local exploitation to avoid premature 

convergence. 

 Adaptability: Easily adaptable to different steganographic frameworks and image types. 

 Scalability: Capable of handling large-scale, high-dimensional optimization problems. 
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7.4 Common Metaheuristic Algorithms Used 

 Genetic Algorithm (GA): Uses evolutionary principles (selection, crossover, mutation) to evolve embedding 

positions or strategies. 

 Particle Swarm Optimization (PSO): Models particles (candidate solutions) moving through a solution space 

influenced by local and global bests. 

 Ant Colony Optimization (ACO): Based on pheromone trails in ant colonies, used to find optimal paths or 

sequences. 

 Grey Wolf Optimizer (GWO): Mimics the social hierarchy and hunting behavior of grey wolves. 

 Firefly Algorithm, Bat Algorithm, Whale Optimization Algorithm: Inspired by natural phenomena and 

effective in high-dimensional optimization. 

7.5 Recent Trends 

In this review, we focused on studies published within the last six years that explicitly apply metaheuristic algorithms 

in either steganography or steganalysis. The selection process prioritized high-quality contributions that demonstrated 

practical evaluation, rather than purely descriptive discussions, and that employed metaheuristics for well-defined 

purposes such as optimizing embedding positions, tuning classifier parameters, or selecting discriminative features. 

This ensured that only methodologically rigorous and experimentally validated works were included in Table V and 

VI, making its content representative of the state-of-the-art. Recent studies integrate metaheuristics with deep learning, 

transform domain methods (DWT, DCT), or hybridize multiple algorithms to enhance performance further. 

Additionally, adaptive or dynamic metaheuristic strategies are gaining traction for real-time steganographic systems. 

The following two tables summarize the applications of metaheuristic algorithms in image steganography and 

steganalysis. 

 

TABLE V. APPLICATIONS OF METAHEURISTIC ALGORITHMS IN IMAGE STEGANOGRAPHY 

Ref   Metaheuristic 

Algorithm 

 

Domain Purpose Cover type  Performance 

[105] Harris Hawks 

Optimization 

(HHO)–IWT 

Frequency (IWT) Optimal pixel 

selection to 

maximize 

payload and 
imperceptibility 

Images 

(256×256) 

- PSNR: 36.66–38.05 dB 

- SSIM: 0.9144–0.9713 

- QI: 0.9956–1.000 

- Capacity: 50% 
- Time: 35 s (embed) /19 s (extract) 

- Robust to RS/PDH and image 
processing attacks 

[106]  

 

BESOPS–CE 

(Bald Eagle Search + 

Chaotic Encryption) 

Frequency (IWT) Optimal pixel 

selection (BES) 

with chaotic 
encryption of the 

secret image 

before k-LSB 
embedding; 

improves 

imperceptibility 
and robustness 

Digital images 

(USC–SIPI) 

 

- PSNR: 55.32–56.64 dB 

- SSIM: 0.9982–0.9998 
- MSE: 0.1408–0.1912 

- RMSE: 0.3752–0.4373 

- PSNR under attacks: 

54.83–55.92 dB 

- NCC: 0.9980–0.9993 

- Time: 0.65–0.74 min(total) 

[107] Particle Swarm 

Optimization 

(PSO) with 

Integer Wavelet 

Transform (IWT) 

Frequency  HMPSO for pixel 

selection with 

DDV embedding 

to enhance 

confidentiality 
and integrity 

USC–SIPI 

images (color 

and grayscale) 

Robust against 
χ2 attack 

- Payloads: 6.25%, 12.5%, 18.75%, 25% 

- PSNR: 61.41–78.09 dB 

- MSE: 0.1012–0.8021 
-  SSIM: up to 1.000 

[108] Particle Swarm 

Optimization 

(PSO) with 
Integer Wavelet 

Transform (IWT) 

Frequency 

domain (IWT) 
PSO 

generates an 

optimal 

substitution 

matrix for 

embedding in 

IWT 

coefficients, 

with OPAP 

Standard 

benchmark 

grayscale images 
(Lena, Baboon, 

Barbara, Jet) 

 

 

- Payload: 589,824 bits 
-  PSNR: 41.13–41.97 dB 
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Ref   Metaheuristic 

Algorithm 

 

Domain Purpose Cover type  Performance 

minimizing 

distortion 
[109 Cuckoo Search 

(CS), Bee Colony 
Optimization 

(BCO), Cat 

Swarm 
Optimization 

(CSO), Genetic 

Algorithm (GA), 
Particle Swarm 

Optimization 

(PSO), Simulated 
Annealing (SA), 

Firefly Algorithm 

(FA) 

Spatial domain Bio-inspired 

optimization of 
pixel substitution; 

hybrid models 

(CS–GA–BCO 
for color, 

CS–GA–PSO for 

grayscale) 
achieve higher 

imperceptibility 

and robustness 
than LSB and 

DWTQ 

Benchmark 

images 
(Lena,Baboon, 

Pepper; color  

and grayscale) 

 

- PSNR: ∼41.8 dB 

(best individual, CS color) 

- PSNR: ∼42.1 dB 

(best individual, CS grayscale) 

- Hybrid: up to ∼46 dB 

(CS–GA–BCO color) 

- Hybrid: up to ∼45 dB 

(CS–GA–PSO grayscale) 

[110] Particle Swarm 
Optimization (PSO) 

Spatial Domain PSO determines 
the optimal 

starting pixel, 

scan order, and 
LSB plane for 

embedding; 

improves payload 
capacity and 

imperceptibility 
compared to GA 

Standard 
benchmark 

grayscale images 

 

- Max payload: (∼40%) 

- PSNR: GA benchmark ≈ 45.13 dB → 

Proposed PSO: 56.60 dB 

- Execution time (5 images): 4.735 s 

(embed + extract) 

[111] Adaptive Genetic 

Algorithm (AGA) 

Transform 

Domain 

(2-level DWT; 
block-wise) 

AGA derives an 

optimal 

substitution 
matrix for LSB 

embedding after 

DWT, while 
OPAP refines 

pixel values to 

minimize 
distortion; 

AES+RSA 

strengthens 
confidentiality 

Benchmark 

images 

(Lena, Baboon, 
Boat, 

Fundus1–4) 

- PSNR: from ∼50.76–59.06 dB (post-

embedding) → 51.30–59.63 dB(post-

optimization) 

- Gain: consistent ~0.5–2.1 

improvement 

- Execution time: ∼64.33–89.45 ms 

(encryption), ∼33–45 ms (decryption) 

- NPCR: > 99% 

- UACI: 15–41% 

-  MAE: ≈0.10–0.41% 

 

 

Narrative summaries of studies listed in Table V 

 

7.5.1 Hassaballah et al. (2021) — HHO–IWT for transform-domain embedding [105].. This study introduces a 

stegano graphic method for IoT security that combines Harris Hawks Optimization (HHO) with the Integer 

Wavelet Transform (IWT). The HHO algorithm searches for optimal encoding vectors and coefficient positions, 

enabling k-LSB embedding  of secret images into IWT subbands while minimizing distortion through optimal 

pixel adjustment (OPAP). Experiments with 256 × 256 secret images embedded into 512 × 512 cover images 

show that the method achieves high visual quality even at the maximum tested payload of 50% of the cover image 

(k = 4). Reported performance includes PSNR in the range of 36.66–38.05 dB, SSIM between 0.9144–0.9713, 

and QI between 0.9956–1.000. In terms of efficiency, embedding and extraction at full payload require about 

35.35 s and 19.36 s, respectively. The method also demonstrates robustness against image processing attacks, 

histogram analysis, and RS-steganalysis. 

 

7.5.2 Bahaddad et al. (2023) — BESOPS–CE for pixel-level embedding with chaotic encryption [106].. This 

paper introduces a hybrid steganographic scheme that integrates the Bald Eagle Search (BES) algorithm 

for optimal pixel selection with chaotic encryption (Chen system) of the secret image. After encryption, 

the payload is embedde into selected IWT subbands (LH, HL, HH) using k-LSB substitution with OPAP 

refinement, followed by inverse IWT reconstruction. Experimental evaluation on the USC–SIPI image 

dataset shows very high imperceptibility (PSNR: 55.32–56.64 dB, SSIM: 0.9982–0.9998, with low 
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MSE and RMSE) and practical efficiency (embedding: ∼0.37–0.43 min, extraction: ∼0.28–0.32 min). 

Robustness tests confirm resilience under common image attacks (PSNR: 54.83–55.92 dB) with strong 

correlation (NCC: 0.9980–0.9993). Comparative studies demonstrate that BESOPS–CE consistently 

outperforms CE–GAN, GSO–SM, SSO–SM, and CSO–SM in terms of imperceptibility and security 

metrics. 
 

7.5.3  Ali et al. (2024) — HMPSO with Distinction Disparity Value (DDV) [107].. This work presents an 

image steganography method that integrates Hénon Map–based Particle Swarm Optimization (HMPSO) 

with Distinction Disparity Value (DDV) embedding to enhance the confidentiality and integrity of 

hidden data. HMPSO guides the optimal pixel selection process, while DDV ensures controlled 

embedding that minimizes distortion. To further improve security, the secret message is compressed 

with Huffman coding prior to embedding. The method was evaluated on grayscale and color images 

from the USC–SIPI database at multiple payload levels (6.25%, 12.5%, 18.75%, and 25%). 

Experimental results show high imperceptibility with PSNR values up to 78.09 dB and SSIM reaching 

1.000, while maintaining low MSE (0.1012–0.8021). Importantly, the scheme withstands statistical χ2 

attacks, making it more robust compared to conventional LSB and other PSO-based approaches. The 

key contribution lies in balancing payload capacity, image quality, and resistance to steganalysis 

through the combined use of HMPSO-driven pixel selection and DDV embedding. 
 

7.5.4  Muhuri et al. (2020) — PSO–IWT for transform-domain embedding [108].. This work integrates 

Particle Swarm Optimization (PSO) with Integer Wavelet Transform (IWT) for image steganography. 

The key idea is that PSO evolves an optimal substitution matrix to guide the embedding of secret data 

into IWT coefficients. At the same time, an OPAP adjustment step minimizes distortion between cover 

and stego images. Experiments on standard benchmark images (Lena, Baboon, Barbara, Jet) under a 

fixed payload of 589,824 bits demonstrated consistent visual quality, achieving PSNR values between 

41.13–41.97 dB. Comparative analysis confirmed that the proposed PSO–IWT scheme outperformed 

PSO–LSB and PSO–DWT variants in imperceptibility and robustness. 
 

7.5.5 Rezaei et al. (2024) — Bio-inspired hybrids for spatial-domain embedding [109].. This study introduces 

a blind and attack-resistant steganography framework in the spatial domain, where a wide set of 

metaheuristics (CS, BCO, CSO, GA, PSO, SA, FA) are applied to optimize pixel substitution. Beyond 

evaluating individual algorithms, the authors emphasize hybrid designs: CS–GA–BCO proved most 

effective for color images, while CS–GA–PSO excelled on grayscale. The approach consistently 

improved imperceptibility (PSNR ∼41.8–42.1 dB for the best individuals, up to ∼45–46 dB with 

hybrids) and demonstrated stronger robustness compared to LSB and even competitive or superior 

results against DWT-based schemes. The method thus highlights the potential of hybrid bio-inspired 

optimization in balancing image quality with resistance to steganalysis. 
 

7.5.6  Mohsin et al. (2019) — PSO-guided spatial-domain embedding [110].. This work addresses the 

challenge of achieving high payload capacity without degrading stego quality by casting pixel selection 

in the spatial domain as an optimization problem. The authors replace GA with Particle Swarm 

Optimization (PSO), which efficiently determines the best pixel positions, scan order, and LSB planes 

for embedding. By partitioning both cover and secret into four blocks, PSO balances embedding load 

across the image while preserving imperceptibility. Comparative experiments on standard grayscale 

benchmarks show a clear gain over GA, with PSNR rising from ∼45.1 dB (GA) to 56.6 dB under a 

maximum payload of 4 bpp (≈40%). The method further demonstrated practical feasibility with a total 

runtime of 4.735 s for embedding and extraction across five images. 
 

7.5.7 Denis R and Madhubala P (2020) — AGA–OPAP for DWT-based embedding [111].. This work applies 

an Adaptive Genetic Algorithm (AGA) to derive an optimal substitution matrix for LSB embedding in 

the two-level DWT domain, with OPAP used to refine pixel values. Tested on benchmark images (Lena, 
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Baboon, Boat, Fundus1–4), the method improved PSNR from post-embedding ∼50–58 dB to post-

optimization 51.29–59.62 dB, yielding gains of +1–2 dB while maintaining robustness against RS 

steganalysis and low execution time. 

TABLE VI  : APPLICATIONS OF METAHEURISTIC ALGORITHMS IN IMAGE STEGANALYSIS 

 
REF Classifier 

Used 

Metaheuristic 

Algorithm 

Purpose Cover type Performance 

[112] Support 
Vector 

Machine 

(SVM) 

Particle Swarm 
Optimization 

(PSO) 

Blind statistical 
steganalysis; PSO 

tunes SVM 

hyperparameters 
(C, γ); 8×8 

block-based 

features 
(first/second- 

order, extended 

DCT, Markov), 
optional 

calibration, PCA 

+ 10-fold CV; 
spatial (LSB 

Replacement, 

LSB Matching, 
PVD) and 

transform 

(F5/DCT) 
schemes 

JPEG (256×256); 
INRIA 

Holidays (1500, 

train) + 
UCID(800,test) 

 

- Accuracy (LSB Replacement): 

84.5% 

(ANOVA, strat./auto) 

 

- Accuracy (LSB Matching): 

84.86% (ANOVA, shuffle) 

 

- Accuracy (PVD): 99.8% 

(ANOVA, linear) 

 

- Accuracy (F5): 97.6% (ANOVA, 

shuffle) 

[113] SVM, 

Ensemble, 
LDA, kNN 

Multi-Island 

Lévy-Flight based 
Grasshopper 

Optimization 

Algorithm 
(MI–LFGOA) 

Wrapper feature 

selection with 
PCA 

pre-processing 

followed by 
LFGOA using a 

multi-island 

strategy; fitness = 
detection error 

(SVM/ensemble). 

Objective: reduce 
SRM (34,671-D) 

and SPAM 

(686-D) 
dimensionality 

and 

computational 
cost while 

preserving or 

improving 
detection 

accuracy. 

Spatial images 

(BOSSBase 1.01; 
grayscale) 

 

 
Detection accuracy up to92.2% (SPAM, 0.7 

bpp) and 94% (SRM,0.7bpp); 

 92–96% feature reduction; outperforms 
PSO, GWO, GOA, BA,FA. 

[114] Linear SVM, 
DT, 

NB, k-NN 

APSO (adaptive 
inertia-weight 

PSO) 

AUC-based 
wrapper feature 

selection for 

dimensionality 
reduction in 

steganalysis 

Spatial images: 
BOSSBase1.01 

(10k cover / 10k 

stego ) 

- SPAM: Accuracy = 82.62% (140 
selected 

features out of 686) 

- CC-PEV: Accuracy = 
87.72% (363 selected 

features out of 548) 

[115] SVM, LDA, 

RF, 
kNN, ZeroR 

Levy Flight-based 

Grey Wolf 
Optimization 

(LFGWO) 

selects the most 

relevant features 
from high-

dimensional 

SPAM and 
AlexNet . 

Spatial images 

(BOSSBase v1.01 

- SPAM: 84 selected features (out of 

686), accuracy = 69.12% (RF) 
 

- AlexNet: 89 selected 

features (out of 1000), accuracy = 
67.11% (RF) 

 

- Reduced training time 
vs. full features; 

outperformed PSO 

and GWO in feature 
reduction and accuracy 
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REF Classifier 

Used 

Metaheuristic 

Algorithm 

Purpose Cover type Performance 

[116] Xu-Net, 
Yedroudj-

Net 

(Deep 
Learning 

Networks) 

Evolutionary 
Algorithm 

Enhancing 
steganalysis 

network training 

performance by 
applying a 

strengthening 

framework based 
on evolutionary 

algorithms. 

Grayscale Images 
(BOSSBase 1.01, 

BOWS2) 

 
Improved Xu-Net 

accuracy by over 1.1%, 

Yedroudj-Net by over 
1.3%. Faster convergence and 

improved learning ability 

during training. 

[117] k-NN BDA–SA (Binary 
Dragonfly 

Algorithm 

+ Simulated 
Annealing) 

Hybrid approach: 
BDA with SA to 

avoid local 

optima in BDA. 
Feature selection 

to reduce 

dimensionality 

and improve 

accuracy. 

18 datasets from 
UCI 

repository 

 
Largest gain: +37.4pp (Exactly: 100.0% vs 

62.6% BALO) 

- Also observed: +33.4 
pp vs BGWO, +32.8 

pp vs BPSO (Exactly dataset) 

- Smallest gain: +3.1 

pp (Breastcancer : 98.8% vs 95.7% 

BGWO) 

 

 

Narrative summaries of steganalysis studies corresponding to Table VI 

 

7.5.8  Shankar & Azhakath (2023) — Random-embedded, calibrated statistical blind JPEG steganalysis with 

SVM and SVM–PSO [112].. The authors conduct a random-embedded, calibrated statistical blind 

steganalysis study on JPEG images. Their pipeline applies DCT, then uses calibration to estimate the 

cover prior to feature extraction. Block (8 ×8) based analysis where first-order, second-order, extended 

DCT, and Markov features are extracted, with PCA for reduction. Embedding is evaluated across spatial 

(LSB Replacement, LSB Matching, PVD) and transform (F5) domains using random embedding 

percentages. For classification, they compare cross-validated SVM against SVM–PSO under multiple 

kernel functions and dataset resampling schemes (termed "sampling" in the paper: linear, shuffling, 

stratified, automatic). The datasets are INRIA Holidays (training) and UCID (testing), JPEG lossless, 

256 × 256. Overall, they report better classification for SVM–PSO in several settings (notably on 

uncalibrated images) and note stable convergence characteristics of PSO—supporting the view that 

metaheuristics can assist not only with feature design but also with the practical configuration of 

classical detectors (e.g., via the kernels and sampling schemes examined in the study). 
 

7.5.9  Chhikara & Kumar (2020) — MI–LFGOA for spatial rich-model steganalysis [113].. This work 

addresses the curse of dimensionality in spatial steganalysis, where descriptors such as SRM (34k+ 

features) and SPAM (686 features) impose high training cost with redundant information. The authors 

integrate PCA with a metaheuristic search, introducing a Lévy-flight variant of Grasshopper 

Optimization (LFGOA) and further extending it into a multi-island framework (MI–LFGOA) to 

maintain diversity and avoid premature convergence. On BOSSBase 1.01, their method reduces feature 

sets by over 90% while still achieving ∼92% (SPAM) and 94% (SRM) detection accuracy. Compared 

with PSO, GWO, GOA, BA, and FA, MI–LFGOA consistently produced more compact subsets without 

sacrificing accuracy. The key contribution is showing that multi-island search can make rich-model 

steganalysis computationally feasible, highlighting the potential of hybrid dimensionality reduction 

(PCA + metaheuristic) in digital forensics. 
 

7.5.10 Adeli et al. (2018) — APSO for spatial image steganalysis [114].. The study introduces an adaptive 

inertia-weight PSO (APSO) as a wrapper-based selector using AUC as the fitness criterion. Experiments 

on BOSSBase 1.01 with SPAM and CC-PEV descriptors demonstrate that APSO can achieve 

competitive detection accuracy while substantially reducing the feature dimensionality: from 686 to 140 

features in SPAM (82.6% accuracy) and from 548 to 363 features in CC-PEV (87.7% accuracy). In 

addition to accuracy gains, the method showed low computational cost, with execution times of about 
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248 ms for SPAM and 214 ms for CC-PEV, confirming that APSO is efficient compared to conventional 

feature selection approaches. 
 

7.5.11 Pathak et al. (2019) — LFGWO for feature selection in steganalysis [115].. The authors proposed a 

Levy Flight based Grey Wolf Optimization (LFGWO) for feature selection. They evaluated it on the 

BOSSBase v1.01 dataset using SPAM and AlexNet features. According to Table 4, LFGWO reduced 

the SPAM feature set from 686 to 84 and achieved a classification accuracy of 69.12% with Random 

Forest. For AlexNet, the feature set was reduced from 1000 to 89 with an accuracy of 67.11% (RF). The 

comparative results further show that PSO selected 95 (SPAM) and 94 (AlexNet) features with 

accuracies of 59.63% and 56.35%, while GWO selected 87 (SPAM) and 92 (AlexNet) features with 

accuracies of 61.15% and 57.25%. In addition, Table 5 reports that training times were significantly 

reduced. For example, Random Forest required 4.12s (SPAM) and 7.31s (AlexNet) without feature 

selection, compared to only 0.67s and 0.71s after applying LFGWO. These results confirm that the 

method not only improves accuracy and reduces dimensionality but also enhances computational 

efficiency. 
 

7.5.12  Ma et al. (2025) — Evolutionary Training Framework [116].. Ma et al. propose an evolutionary training 

framework that strengthens spatial CNN steganalyzers without changing their architectures. The method 

encodes the convolutional layer and the BN layer as block-level individuals, promotes model diversity 

via Xavier and Kaiming initialization, and triggers strengthening when training detection accuracy stalls 

according to a defined decision rule. It then applies an Elite plus Linear-rank selection strategy, adaptive 

crossover with probability controlled by population fitness, and a staged mutation scheme with 

decreasing amplitude. Experiments on BOSSBase 1.01 (10,000 grayscale images, resized from 

512×512 to 256×256) with BOWS2 as supplemental data and a 4:5:1 train: test: validation split, using 

WOW, S-UNIWARD, and HILL at 0.2, 0.3, and 0.4 bpp, report consistent gains: Xu-Net improves by 

more than 1.1 percentage points and Yedroudj-Net by more than 1.3 percentage points, with faster 

convergence. 
 

7.5.13  Chantar et al. (2021) — BDA-SA wrapper (general-purpose) [117].. Addressing local-optima pitfalls 

in single swarm selectors, this study hybridizes the Binary Dragonfly Algorithm (BDA) with Simulated 

Annealing (SA), embedding a local-refinement phase over the best binary solution. Although evaluated 

on diverse UCI datasets rather than steganalysis-specific corpora, the mechanism—global search plus 

local exploitation—transfers naturally to steganalysis pipelines that must compress very high-

dimensional descriptors (e.g., SPAM/SRM or CNN features) without sacrificing detection accuracy. 
 

8.  DISCUSSION 

The consolidated evidence in Table V and Table VI highlights how different metaheuristic families behave under 

specific embedding domains and analysis objectives, which provides actionable guidance for practitioners. In the 

spatial domain of steganography, swarm-based approaches such as PSO have shown clear advantages when 

imperceptibility and payload are the main concerns. For example, HMPSO combined with DDV embedding achieved 

PSNR values between 61.41 and 78.09 dB with SSIM up to 1.000, while maintaining robustness against the χ2 attack 

across payloads ranging from 6.25% to 25% [107]. Similarly, Mohsin et al. reported that a PSO-driven steganography 

produced 56.60 dB PSNR compared to 45.13 dB with a GA baseline at around 40% payload, with a total runtime of 

only 4.735 s over five images [110]. These results suggest that PSO-based families represent a pragmatic choice for 

spatial-domain applications where high fidelity and moderate payload capacity are prioritized. For steganography, this 

is the opposite: robustness and stability are favored, and nature-inspired optimizers perform better. In case of HHO 

coupled with IWT, the PSNR values varied from 36.66 to 38.05 dB, and the range of SSIM was 0.9144 to 0.9713, and 

it is robust to RS/PDH and generic image processing attacks [105]. PSO–IWT delivered PSNR values of 41.13–41.97 

dB for a fixed payload of 589,824 bits [108]. More notably, the BESOPS–CE hybrid scheme provided both high 

imperceptibility, with PSNR up to 56.64 dB and SSIM near 0.9998, and robustness, as indicated by PSNR values under 

attack conditions of about 55 dB and NCC above 0.998 [106]. This evidence indicates that when robustness to 

compression and noise is critical, HHO–IWT and PSO–IWT are suitable. At the same time, BES with chaotic 
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encryption is preferable when both imperceptibility and robustness are required in transform-domain embedding. 

Hybrid frameworks that combine metaheuristics with cryptographic or post-adjustment techniques further illustrate 

how balanced objectives can be achieved. For example, the AGA–DWT–OPAP method consistently improved PSNR 

by around 1–2 dB after optimization (up to 59.62 dB) while maintaining low timing overheads, demonstrating that 

evolutionary GA variants with distortion minimization can enhance transform-domain quality without compromising 

practicality [111]. BESOPS–CE similarly combines pixel selection with chaotic encryption to simultaneously improve 

imperceptibility and robustness [106]. Turning to steganalysis, Table VI shows that swarm and evolutionary algorithms 

are effective for feature selection and classifier configuration. MI–LFGOA reduced SRM and SPAM features by more 

than 90% while retaining detection accuracies of 94% and 92.2% respectively [113]. APSO achieved 82.62% with 140 

selected SPAM features and 87.72% with 363 selected CC-PEV 

features, with relatively low execution times [114]. LFGWO reduced SPAM to 84 features and AlexNet to 89 features, 

achieving 69.12% and 67.11% accuracy with Random Forest, outperforming PSO and GWO under the same conditions 

[115]. For classifier tuning, PSO optimized SVM parameters to reach 99.8% accuracy on PVD and 97.6% on F5, and 

improved the detection of LSB-based schemes [112]. At the deep learning level, evolutionary strengthening improved 

CNN steganalyzers such as Xu-Net and Yedroudj-Net by more than 1.1–1.3 percentage points, with faster convergence 

[116]. Collectively, these findings show that swarm/evolutionary selectors are practical tools for dimensionality 

reduction, PSO is effective for classical classifier optimization, and evolutionary training can incrementally improve 

deep architectures. Beyond metaheuristic-based approaches, Płachta et al. (2022) [118] provide a rigorous comparative 

study of JPEG image steganalysis on BOSSBase (QF = 75) using three embedding algorithms (nsF5, J-Uniward, 

UERD) at two payloads (0.1 and 0.4 bpnzac). They evaluated both shallow ensembles and deep learning models across 

DCTR, GFR, and PHARM feature spaces with balanced test sets and standard metrics (Accuracy, Precision, Recall, 

F1, AUC). Their results show that DCTR and GFR consistently outperform PHARM, with near-perfect detection for 

nsF5 at 0.4 bpnzac (∼99.9% accuracy). In contrast, J-Uniward at 0.1 bpnzac remains particularly challenging 

(maximum ≈ 56.3% accuracy). Importantly, their best ensemble (linear-regression fusion on DCTR) achieved mean 

Accuracy ≈ 80.1% and AUC ≈ 84.3%, slightly surpassing the best deep model (≈ 78.2% Accuracy, AUC ≈ 83.0%). 

The authors explicitly state that “the performance of the best deep learning algorithm was either similar or slightly 

inferior to that of the best ensemble classifier built on linear regression,” concluding that carefully designed ensemble 

classifiers can serve as a strong alternative to deep learning in image steganalysis. Finally, evidence from hybrid search 

methods, although tested on general-purpose UCI datasets rather than image corpora, further supports the principle of 

combining global and local refinement. The BDA–SA wrapper achieved up to 100% accuracy on the Exactly dataset 

compared to 67.2–62.6% for competing methods, with its smallest gain still at +3.1 percentage points on the 

Breastcancer dataset [117]. This reinforces the general observation, already reflected in Table VI, that global 

exploration combined with local exploitation is beneficial in feature selection pipelines. 

 

 In summary, the comparative results in Tables V and VI underscore that swarm-based algorithms, especially PSO and 

its hybrids, are most reliable in spatial steganography where imperceptibility and payload matter, nature-inspired 

approaches such as HHO and BES perform better in the frequency domain where robustness is critical, and hybrid 

designs provide balanced trade-offs. For steganalysis, swarm and evolutionary algorithms are particularly effective for 

feature selection and classifier configuration, with global–local hybridization strategies further enhancing 

performance. The complementary evidence from Płachta et al. (2022) further emphasizes that ensemble classifiers can 

rival or even outperform deep learning in JPEG steganalysis, providing practitioners with an additional perspective for 

algorithm selection. 

 

9. Research Gaps 

Although recent contributions demonstrate remarkable progress, several gaps persist. First, the absence of unified 

datasets and standardized evaluation protocols hinders fair comparison and reproducibility across studies. Second, 

scalability to large-scale and high-resolution datasets has not been systematically addressed, limiting the applicability 

of current methods in real-world scenarios. Third, while robustness against common distortions has been achieved, 

resistance to advanced adversarial steganalysis tools remains weak. Fourth, the interpretability of metaheuristic-driven 

designs is rarely explored, leaving unclear why certain optimization strategies succeed. Finally, despite promising 

results of hybrid and ensemble-based approaches, the fundamental trade-offs among imperceptibility, robustness, 

payload, and detectability remain unresolved, underscoring the need for more adaptive and balanced frameworks. 

 

10.   Future Directions 

The survey of recent contributions reveals that despite the impressive improvements achieved by metaheuristic-driven 
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image steganography and steganalysis, several challenges remain. As highlighted in Tables V and VI, spatial-domain 

approaches optimized with metaheuristics can reach very high imperceptibility (PSNR above 55 dB and SSIM close to 

0.99). At the same time, transform-domain methods provide robustness with BER values below 0.01 and NCC near unity. 

On the analysis side, optimization-assisted steganalyzers frequently report detection accuracies higher than 90% together 

with competitive precision, recall, F1, and AUC scores. These observations confirm the progress of the field, but also point 

to open directions. One important perspective is the integration of deep models with metaheuristic optimization. While 

deep architectures have shown strong performance, comparative evidence [118] indicates that ensemble-based solutions 

may still outperform lightweight neural networks in terms of accuracy and AUC. Exploring synergies between these 

paradigms could improve both embedding adaptivity and detection reliability. Another direction concerns robustness 

against increasingly powerful steganalysis tools, since the reviewed results demonstrate that transform-domain approaches 

already gain advantages in this aspect, but further enhancement is required. The reviewed studies also show that algorithm 

performance varies significantly with domain and payload, which underlines the necessity of systematic benchmarking. 

The lack of unified datasets and evaluation protocols prevents fair comparison across methods, and the development of 

standard frameworks remains a priority. Finally, the consistent trade-offs observed in the survey (imperceptibility vs. 

robustness, payload vs. detectability) highlight that future research must focus on adaptive and hybrid strategies capable of 

balancing these conflicting requirements. In conclusion, image steganography and steganalysis remain fertile areas of 

research. Addressing the outlined challenges, guided by the performance evidence summarized in this review, will be 

crucial to moving towards more secure and practically deployable systems. 
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