An Effective Clustering Based Privacy Preserving Model Against Feature Attacks

Main Article Content

Muhammad Zulqurnain
Muazzam Ali Khan Khattak
Adeel Anjum
Tehsin Kanwal

Abstract

The rise in healthcare-related illnesses has generated a substantial amount of patient data, making the safeguarding of patient data privacy imperative. Existing privacy protection methods face challenges, including longer execution times, compromised data quality, and increased information loss as data dimensions expand. Effective attribute selection is vital to enhance preservation methods.


Our research introduces a privacy-preserving clustering approach that addresses these concerns through two stages: feature selection and anonymization. The first stage selects relevant features using symmetrical uncertainty (SU) and eliminates duplicates with Kendall’s Tau Correlation Coefficient. The Utility Preserved Anonymization (UPA) algorithm is employed in the second phase to achieve privacy preservation. Additionally, our approach reduces data dimensionality to simplify cluster creation for anonymization. Experimental analysis on real-time data demonstrates the strategy’s effectiveness, with outstanding sensitivity (97.85%) and accuracy (95%), efficiently eliminating unnecessary features and simplifying clustering complexity.

Downloads

Download data is not yet available.

Article Details

How to Cite
Zulqurnain , M., Khattak , M. A. K., Anjum , A., & Kanwal , T. (2024). An Effective Clustering Based Privacy Preserving Model Against Feature Attacks . Mesopotamian Journal of Computer Science, 2024, 44–61. https://doi.org/10.58496/MJCSC/2024/005
Section
Articles