Quantum-Inspired FBMC Transceivers for 6G: Potential Applications, Fundamentals, Opportunities, Advantages, Challenges, Future Trends

Main Article Content

Karthik Kumar Vaigandla

Abstract

The forthcoming sixth-generation (6G) networks require transformative improvements in spectral efficiency, latency, and energy performance. This review highlights the novelty of integrating quantum-inspired approaches with Filter Bank Multicarrier (FBMC) transceivers, offering a new paradigm for 6G communication. The fusion of quantum-inspired algorithms with FBMC enables advanced interference management, improved robustness, and adaptability for diverse applications such as intelligent transportation, immersive extended reality, and ultra-reliable low-latency communication. Key challenges, including hardware complexity, scalability, and algorithmic optimization, are critically examined. The article further outlines future research directions, emphasizing how this integration can shape efficient, intelligent, and resilient 6G transceivers.

Article Details

Section

Articles

Deprecated: json_decode(): Passing null to parameter #1 ($json) of type string is deprecated in /home/u273879158/domains/mesopotamian.press/public_html/journals/plugins/generic/citations/CitationsPlugin.php on line 68

How to Cite

Quantum-Inspired FBMC Transceivers for 6G: Potential Applications, Fundamentals, Opportunities, Advantages, Challenges, Future Trends (Karthik Kumar Vaigandla , Trans.). (2026). Applied Data Science and Analysis, 2026, 1-16. https://doi.org/10.58496/ADSA/2026/001

References

[1] Attaran, Mohsen. "The impact of 5G on the evolution of intelligent automation and industry digitization." Journal of ambient intelligence and humanized computing 14.5 (2023): 5977-5993.

[2] Bhide, Pranita, Dhanush Shetty, and Suresh Mikkili. "Review on 6G communication and its architecture, technologies included, challenges, security challenges and requirements, applications, with respect to AI domain." IET Quantum Communication 6.1 (2025): e12114.

[3] Saxena, N., Rastogi, E., Rastogi, A. (2021). 6G Use Cases, Requirements, and Metrics. In: Wu, Y., et al. 6G Mobile Wireless Networks. Computer Communications and Networks. Springer, Cham

[4] Andras, Cristina Maria, Gordana Barb, and Marius Otesteanu. "Comparative Analysis of Beamforming Techniques and Beam Management in 5G Communication Systems." Sensors 25.15 (2025): 4619.

[5] Vaigandla, K. K. (2022, February). Communication technologies and challenges on 6G networks for the Internet: Internet of Things (IoT) based analysis. In 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM) (Vol. 2, pp. 27-31). IEEE.

[6] Dang, S., Amin, O., Shihada, B., & Alouini, M. S. (2020). What should 6G be?. Nature Electronics, 3(1), 20-29.

[7] Vaigandla, K. K., Azmi, N., Podila, R., & Karne, R. K. (2021). A survey on wireless communications: 6g and 7g. International Journal Of Science, Technology & Management, 2(6), 2018-2025.

[8] Kazmi, S. H. A., Hassan, R., Qamar, F., Nisar, K., & Ibrahim, A. A. A. (2023). Security Concepts in Emerging 6G Communication: Threats, Countermeasures, Authentication Techniques and Research Directions. Symmetry, 15(6), 1147. https://doi.org/10.3390/sym15061147

[9] Viswanathan, H., & Mogensen, P. E. (2020). Communications in the 6G era. IEEE access, 8, 57063-57074.

[10] Wang, C. X., Lv, Z., Gao, X., You, X., Hao, Y., & Haas, H. (2022). Pervasive wireless channel modeling theory and applications to 6G GBSMs for all frequency bands and all scenarios. IEEE Transactions on vehicular technology, 71(9), 9159-9173.

[11] Dilli, R. Design and Feasibility Verification of 6G Wireless Communication Systems with State of the Art Technologies. Int J Wireless Inf Networks 29, 93–117 (2022). https://doi.org/10.1007/s10776-021-00546-3

[12] Qadir, Z., Le, K. N., Saeed, N., & Munawar, H. S. (2023). Towards 6G Internet of Things: Recent advances, use cases, and open challenges. ICT express, 9(3), 296-312.

[13] Ji, B., Han, Y., Liu, S., Tao, F., Zhang, G., Fu, Z., & Li, C. (2021). Several key technologies for 6G: Challenges and opportunities. IEEE Communications Standards Magazine, 5(2), 44-51.

[14] Gisin, N., & Thew, R. (2007). Quantum communication. Nature photonics, 1(3), 165-171.

[15] Porambage, P., Gür, G., Osorio, D. P. M., Liyanage, M., Gurtov, A., & Ylianttila, M. (2021). The roadmap to 6G security and privacy. IEEE Open Journal of the Communications Society, 2, 1094-1122.

[16] Djordjevic, I. B. (2022). Quantum Communication, Quantum Networks, and Quantum Sensing. Academic Press.

[17] Alshaer, N. A., & Ismail, T. I. (2024). AI-driven quantum technology for enhanced 6G networks: Opportunities, challenges, and future directions. Journal of Laser Science and Applications, 1(1), 21-30.

[18] Ali, M. Z., Abohmra, A., Usman, M., Zahid, A., Heidari, H., Imran, M. A., & Abbasi, Q. H. (2023). Quantum for 6G communication: A perspective. IET Quantum Communication, 4(3), 112-124.

[19] Wang, C., & Rahman, A. (2022). Quantum-enabled 6G wireless networks: Opportunities and challenges. IEEE Wireless Communications, 29(1), 58-69.

[20] Muheidat, F., Dajani, K., & Lo'ai, A. T. (2022). Security concerns for 5G/6G mobile network technology and quantum communication. Procedia Computer Science, 203, 32-40.

[21] Sivapriya, N., Vanteru, M. K., Vaigandla, K. K., & Balakrishna, G. (2023). Evaluation of PAPR, PSD, Spectral Efficiency, BER and SNR Performance of Multi-Carrier Modulation Schemes for 5G and Beyond. SSRG International Journal of Electrical and Electronics Engineering, 10(11), 100-114.

[22] Sivapriya, N., Vaigandla, K. K., Mohandas, R., & Kirubasankar, K. (2025). Evaluation of FBMC/OQAM performance using Hybrid MGDFT and PTS approaches in terms of BER, Spectral Efficiency, and PAPR. International Research Journal of Multidisciplinary Technovation, 7(3), 148-164.

[23] Vaigandla, K. K. (2025). A Comprehensive Review on Multi-Carrier Modulation Schemes, 5G and Various PAPR Minimization Techniques based on Machine Learning. Journal of Sensors, IoT & Health Sciences (JSIHS, ISSN: 2584-2560), 3(1), 20-45.

[24] Manohar, Vuppula, Mohandas R, Kiran Kumar Padakanti, and Karthik Kumar Vaigandla. 2024. “Discrete Elephant Herding Optimization Algorithm for Analysis of PAPR, BER and Spectral Efficiency in FBMC/OQAM System”. International Research Journal of Multidisciplinary Technovation 6 (5):94-109.

[25] Vaigandla, K. K., & Benita, J. (2023). PAPR Reduction of FBMC-OQAM Signals Using Phase Search PTS and Modified Discrete Fourier Transform Spreading. ARPN Journal of Engineering and Applied Sciences, 18(18), 2127-2139.

[26] Vaigandla, K. K., & Benita, J. (2023). Selective Mapping scheme based on Modified Forest Optimization Algorithm for PAPR reduction in FBMC system. Journal of Intelligent & Fuzzy Systems, 45(4), 5367-5381.

[27] Lalitha, A., Supraja, G., Reddy, K. H., Narayana, G. L., & Krishna, D. S. R. Enhancing Wireless Communication: A Comparative Analysis of FBMC and OFDM with Performance Evaluation.

[28] Butt, M. O., Waheed, N., Duong, T. Q., & Ejaz, W. (2024). Quantum-Inspired Resource Optimization for 6G Networks: A Survey. IEEE Communications Surveys & Tutorials.

[29] Vivek, Y., Ravi, V. & Krishna, P.R. Quantum-inspired evolutionary algorithms for feature subset selection: a comprehensive survey. Quantum Inf Process 24, 196 (2025).

[30] Tu, S., Rehman, O. U., Rehman, S. U., Ullah, S., Waqas, M., & Zhu, R. (2020). A novel quantum inspired particle swarm optimization algorithm for electromagnetic applications. IEEE Access, 8, 21909-21916.

[31] Menneer, T., & Narayanan, A. (1995, November). Quantum-inspired neural networks. In Proceedings of the Neural Information Processing Systems (Vol. 95, pp. 27-30).

[32] Suriya, M. (2022). Machine learning and quantum computing for 5G/6G communication networks-A survey. International Journal of Intelligent Networks, 3, 197-203.

[33] Jamil, S. U., Khan, M. A., & Rehman, S. U. (2022). Resource allocation and task off-loading for 6G enabled smart edge environments. IEEE Access, 10, 93542-93563.

[34] Bruno, R., Masaracchia, A., & Passarella, A. (2014, September). Robust adaptive modulation and coding (AMC) selection in LTE systems using reinforcement learning. In 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall) (pp. 1-6). IEEE.

[35] Rouzegar, S. R., & Spagnolini, U. (2019). Diffusive MIMO molecular communications: Channel estimation, equalization, and detection. IEEE Transactions on Communications, 67(7), 4872-4884.

[36] Jain, A. (2024, December). Energy-Efficient Signal Processing Architectures for IoT Networks Design. In 2024 International Conference on Emerging Technologies and Innovation for Sustainability (EmergIN) (pp. 362-367). IEEE.

[37] Tripathi, P. S. M., Chandra, A., Kumar, A., & Sridhara, K. (2011, February). Dynamic spectrum access and cognitive radio. In 2011 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE) (pp. 1-5). IEEE.

[38] Mondal, S., Laskar, M. R., & Dutta, A. K. (2021). ML criterion based signal detection of a MIMO-OFDM system using quantum and semi-quantum assisted modified DHA/BBHT search algorithm. IEEE Transactions on Vehicular Technology, 70(2), 1688-1698.

[39] Siddiqi, M. A., Yu, H., & Joung, J. (2019). 5G ultra-reliable low-latency communication implementation challenges and operational issues with IoT devices. Electronics, 8(9), 981.

Similar Articles

You may also start an advanced similarity search for this article.