Artificial Intelligence and Cybersecurity in Face Sale Contracts: Legal Issues and Frameworks

Main Article Content

Lobna Abdalhusen Easa Al-saeedi
Doaa Fadhil Gatea Albo mohammed
Firas Jamal Shakir
Faris Kamil Hasan
Ghadeer Ghazi Shayea
Yahya Layth Khaleel
Mustafa Abdulfattah Habeeb

Abstract

The sale of facial features is a new modern contractual development that resulted from the fast transformations in technology, leading to legal, and ethical obligations. As the need rises for human faces to be used in robots, especially in relation to industries that necessitate direct human interaction, like hospitality and retail, the potential of Artificial Intelligence (AI) generated hyper realistic facial images poses legal and cybersecurity challenges. This paper examines the legal terrain that has developed in the sale of real and AI generated human facial features, and specifically the risks of identity fraud, data misuse and privacy violations. Deep learning (DL) algorithms are analyzed for their ability to detect AI generated faces in order to potentially function as an AI safety in face sale agreement to allow the authenticity and protecting data. In addition, it examines the legal mechanisms surrounding consent, liability and data protection and suggests changes to help accommodate the complexity of AI. This paper proposes a framework by which AI tools can be integrated into the evolution of cybersecurity strategies, to mitigate risks and ensure compliance with such new legal standards and contribute to discussing the ethical and secure use of AI in Face sale contracts.

Downloads

Download data is not yet available.

Article Details

How to Cite
Al-saeedi, L. A. E., Albo mohammed, D. . F. G., Firas Jamal Shakir, Faris Kamil Hasan, Ghadeer Ghazi Shayea, Yahya Layth Khaleel, & Mustafa Abdulfattah Habeeb. (2024). Artificial Intelligence and Cybersecurity in Face Sale Contracts: Legal Issues and Frameworks . Mesopotamian Journal of CyberSecurity, 4(2), 129–142. https://doi.org/10.58496/MJCS/2024/0012
Section
Articles

References

B. Khoo, R. C.-W. Phan, and C.-H. Lim, “Deepfake attribution: On the source identification of artificially generated images,” WIREs Data Min. Knowl. Discov., vol. 12, no. 3, p. e1438, 2022, doi: https://doi.org/10.1002/widm.1438.

L. L. Dhirani, N. Mukhtiar, B. S. Chowdhry, and T. Newe, “Ethical Dilemmas and Privacy Issues in Emerging Technologies: A Review,” Sensors, vol. 23, no. 3, 2023, doi: 10.3390/s23031151.

W. K. Hon, “Chapter 23: Artificial intelligence: challenges and risks,” in Technology and Security for Lawyers and Other Professionals, Cheltenham, UK: Edward Elgar Publishing, 2024, pp. 512–540. doi: 10.4337/9781803923918.00035.

B. van der Sloot, Regulating the Synthetic Society: Generative AI, Legal Questions, and Societal Challenges. Bloomsbury Academic, 2024.

J. Afzal, “Implementation of Digital Law as a Legal Tool in the Current Digital Era.” Springer.

M. Brundage et al., “Toward trustworthy AI development: mechanisms for supporting verifiable claims,” arXiv Prepr. arXiv2004.07213, 2020.

A. S. Albahri et al., “A systematic review of trustworthy artificial intelligence applications in natural disasters,” Comput. Electr. Eng., vol. 118, p. 109409, 2024, doi: 10.1016/j.compeleceng.2024.109409.

Y. L. Khaleel, M. A. Habeeb, A. S. Albahri, T. Al-Quraishi, O. S. Albahri, and A. H. Alamoodi, “Network and cybersecurity applications of defense in adversarial attacks: A state-of-the-art using machine learning and deep learning methods,” J. Intell. Syst., vol. 33, no. 1, 2024, doi: 10.1515/jisys-2024-0153.

J. J. Bird and A. Lotfi, “CIFAKE: Image Classification and Explainable Identification of AI-Generated Synthetic Images,” IEEE Access, vol. 12, pp. 15642–15650, 2024, doi: 10.1109/ACCESS.2024.3356122.

Y. S. Taspinar and I. Cinar, “Distinguishing Between AI Images and Real Images with Hybrid Image Classification Methods,” in 2024 13th Mediterranean Conference on Embedded Computing (MECO), 2024, pp. 1–4. doi: 10.1109/MECO62516.2024.10577770.

F. M. Salman and S. S. Abu-Naser, “Classification of real and fake human faces using deep learning,” 2022.

D. J. Stephens, “Introduction: The contract for the Sale of Goods,” in Sale of Goods, Informa Law from Routledge, 2020, pp. 1–55.

S. K. Singh, A. Tiwary, and N. Gupta, Business Law. RAJEEV BANSAL, 2021.

E. Apaydin, “The principle of good faith in contracts,” Under Int. Unif. laws cisg, unidroit Princ. Princ. Eur. Contract law.–2019, 2019.

A. Kull, “Restitution as a Remedy for Breach of Contract,” in Restitution, Routledge, 2020, pp. 293–346.

M. G. Bridge, The international sale of goods. Oxford University Press, 2017.

P. Voigt and A. Von dem Bussche, “The eu general data protection regulation (gdpr),” A Pract. Guid. 1st Ed., Cham Springer Int. Publ., vol. 10, no. 3152676, pp. 10–5555, 2017.

R. Li, Artificial intelligence revolution: How AI will change our society, economy, and culture. Simon and Schuster, 2020.

S. Sheikh, Understanding the role of artificial intelligence and its future social impact. IGI Global, 2020.

I. H. Sarker, “AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems,” SN Comput. Sci., vol. 3, no. 2, p. 158, 2022, doi: 10.1007/s42979-022-01043-x.

S. F. Ahmed et al., “Deep learning modelling techniques: current progress, applications, advantages, and challenges,” Artif. Intell. Rev., vol. 56, no. 11, pp. 13521–13617, 2023, doi: 10.1007/s10462-023-10466-8.

C. Sarkar et al., “Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development,” Int. J. Mol. Sci., vol. 24, no. 3, 2023, doi: 10.3390/ijms24032026.

L. Alzubaidi et al., “Reliable deep learning framework for the ground penetrating radar data to locate the horizontal variation in levee soil compaction,” Eng. Appl. Artif. Intell., vol. 129, p. 107627, 2024, doi: 10.1016/j.engappai.2023.107627.

A. Bin Rashid and M. D. A. K. Kausik, “AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications,” Hybrid Adv., vol. 7, p. 100277, 2024, doi: https://doi.org/10.1016/j.hybadv.2024.100277.

A. S. Albahri, Y. L. Khaleel, and M. A. Habeeb, “The Considerations of Trustworthy AI Components in Generative AI; A Letter to Editor,” Appl. Data Sci. Anal., vol. 2023, pp. 108–109, 2023, doi: 10.58496/adsa/2023/009.

A. S. Albahri et al., “A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion,” Inf. Fusion, vol. 96, pp. 156–191, 2023, doi: 10.1016/j.inffus.2023.03.008.

L. Alzubaidi et al., “Towards Risk-Free Trustworthy Artificial Intelligence: Significance and Requirements,” Int. J. Intell. Syst., vol. 2023, p. 4459198, 2023, doi: 10.1155/2023/4459198.

S. S. Rajest, B. Singh, A. J Obaid, R. Regin, and K. Chinnusamy, “Recent developments in machine and human intelligence,” 2023.

Y. L. Khaleel, “Fake News Detection Using Deep Learning,” University of Miskolc, 2021. doi: http://dx.doi.org/10.13140/RG.2.2.31151.75689.

M. A. Habeeb, “Hate Speech Detection using Deep Learning Master thesis,” University of Miskolc, 2021. [Online]. Available: http://midra.uni-miskolc.hu/document/40792/38399.pdf

S. Dadvandipour and Y. L. Khaleel, “Application of deep learning algorithms detecting fake and correct textual or verbal news,” Prod. Syst. Inf. Eng., vol. 10, no. 2, pp. 37–51, 2022, doi: 10.32968/psaie.2022.2.4.

D. Grewal, A. Guha, C. B. Satornino, and E. B. Schweiger, “Artificial intelligence: The light and the darkness,” J. Bus. Res., vol. 136, pp. 229–236, 2021, doi: https://doi.org/10.1016/j.jbusres.2021.07.043.

M. S. Bhuiyan, “The role of AI-Enhanced personalization in customer experiences,” J. Comput. Sci. Technol. Stud., vol. 6, no. 1, pp. 162–169, 2024.

A. Akyüz and K. Mavnaciouglu, “Marketing and Financial Services in the Age of Artificial Intelligence,” in Financial Strategies in Competitive Markets: Multidimensional Approaches to Financial Policies for Local Companies, H. Dinçer and S. Yüksel, Eds., Cham: Springer International Publishing, 2021, pp. 327–340. doi: 10.1007/978-3-030-68612-3_23.

I. Kulkov, “The role of artificial intelligence in business transformation: A case of pharmaceutical companies,” Technol. Soc., vol. 66, p. 101629, 2021, doi: https://doi.org/10.1016/j.techsoc.2021.101629.

J. Paschen, M. Wilson, and J. J. Ferreira, “Collaborative intelligence: How human and artificial intelligence create value along the B2B sales funnel,” Bus. Horiz., vol. 63, no. 3, pp. 403–414, 2020, doi: https://doi.org/10.1016/j.bushor.2020.01.003.

S. Mishra and A. R. Tripathi, “AI business model: an integrative business approach,” J. Innov. Entrep., vol. 10, no. 1, p. 18, 2021.

B. Libai et al., “Brave New World? On AI and the Management of Customer Relationships,” J. Interact. Mark., vol. 51, no. 1, pp. 44–56, Aug. 2020, doi: 10.1016/j.intmar.2020.04.002.

F. Lagioia, A. Jabłonowska, R. Liepina, and K. Drazewski, “AI in Search of Unfairness in Consumer Contracts: The Terms of Service Landscape,” J. Consum. Policy, vol. 45, no. 3, pp. 481–536, 2022, doi: 10.1007/s10603-022-09520-9.

M. Stone et al., “Artificial intelligence (AI) in strategic marketing decision-making: a research agenda,” Bottom Line, vol. 33, no. 2, pp. 183–200, 2020, doi: 10.1108/BL-03-2020-0022.

S. Youn and S. V. Jin, “‘In A.I. we trust?’ The effects of parasocial interaction and technopian versus luddite ideological views on chatbot-based customer relationship management in the emerging ‘feeling economy,’” Comput. Human Behav., vol. 119, p. 106721, 2021, doi: https://doi.org/10.1016/j.chb.2021.106721.

S. Rusthollkarhu, S. Toukola, L. Aarikka-Stenroos, and T. Mahlamäki, “Managing B2B customer journeys in digital era: Four management activities with artificial intelligence-empowered tools,” Ind. Mark. Manag., vol. 104, pp. 241–257, 2022, doi: https://doi.org/10.1016/j.indmarman.2022.04.014.

R. Max, A. Kriebitz, and C. Von Websky, “Ethical Considerations About the Implications of Artificial Intelligence in Finance,” in Handbook on Ethics in Finance, L. San-Jose, J. L. Retolaza, and L. van Liedekerke, Eds., Cham: Springer International Publishing, 2021, pp. 577–592. doi: 10.1007/978-3-030-29371-0_21.

N. Balasubramaniam, M. Kauppinen, K. Hiekkanen, and S. Kujala, “Transparency and Explainability of AI Systems: Ethical Guidelines in Practice,” in Requirements Engineering: Foundation for Software Quality, V. Gervasi and A. Vogelsang, Eds., Cham: Springer International Publishing, 2022, pp. 3–18.

B. Memarian and T. Doleck, “Fairness, Accountability, Transparency, and Ethics (FATE) in Artificial Intelligence (AI) and higher education: A systematic review,” Comput. Educ. Artif. Intell., vol. 5, p. 100152, 2023, doi: https://doi.org/10.1016/j.caeai.2023.100152.

K. Dhote, “Human Faces Dataset.” https://www.kaggle.com/datasets/kaustubhdhote/human-faces-dataset

S. Saponara and A. Elhanashi, “Impact of Image Resizing on Deep Learning Detectors for Training Time and Model Performance,” in Applications in Electronics Pervading Industry, Environment and Society, S. Saponara and A. De Gloria, Eds., Cham: Springer International Publishing, 2022, pp. 10–17.

S. Albert et al., “Comparison of Image Normalization Methods for Multi-Site Deep Learning,” Appl. Sci., vol. 13, no. 15, 2023, doi: 10.3390/app13158923.

M. Xu, S. Yoon, A. Fuentes, and D. S. Park, “A Comprehensive Survey of Image Augmentation Techniques for Deep Learning,” Pattern Recognit., vol. 137, p. 109347, 2023, doi: https://doi.org/10.1016/j.patcog.2023.109347.

D. Theckedath and R. R. Sedamkar, “Detecting Affect States Using VGG16, ResNet50 and SE-ResNet50 Networks,” SN Comput. Sci., vol. 1, no. 2, p. 79, 2020, doi: 10.1007/s42979-020-0114-9.

H. Le Duc, T. T. Minh, K. V. Hong, and H. L. Hoang, “84 Birds Classification Using Transfer Learning and EfficientNetB2,” in Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications, T. K. Dang, J. Küng, and T. M. Chung, Eds., Singapore: Springer Nature Singapore, 2022, pp. 698–705.

F. K. H. Mihna, M. A. Habeeb, Y. L. Khaleel, Y. H. Ali, and L. A. E. Al-saeedi, “Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence,” Mesopotamian J. CyberSecurity, vol. 2024, pp. 4–16, Mar. 2024, doi: 10.58496/MJCS/2024/002.

M. A. Habeeb, Y. L. Khaleel, and A. S. Albahri, “Toward Smart Bicycle Safety: Leveraging Machine Learning Models and Optimal Lighting Solutions,” in Proceedings of the Third International Conference on Innovations in Computing Research (ICR’24), K. Daimi and A. Al Sadoon, Eds., Cham: Springer Nature Switzerland, 2024, pp. 120–131.

H. M. Abdulfattah, K. Y. Layth, and A. A. Raheem, “Enhancing Security and Performance in Vehicular Adhoc Networks: A Machine Learning Approach to Combat Adversarial Attacks,” Mesopotamian J. Comput. Sci., vol. 2024, pp. 122–133, 2024, doi: 10.58496/MJCSC/2024/010.