Design and Practical Implementation of a Stream Cipher Algorithm Based on a Lorenz System
Main Article Content
Abstract
Currently, the security of data has gained significant attention in modern life. Researchers have continued to address this issue. This work addresses image encryption in communication systems. It presents a proposed design and implementation of a cryptography system based on the Lorenz chaos oscillator. The paper methodology uses Xilinx System Generator (XSG) and Field Programmable Gate Array (FPGA) technologies to implement the chaotic system. To determine the approach that uses the least amount of FPGA resources while providing effective and efficient performance, the differential equations of the Lorenz chaotic system are solved via the forward-Euler and Runge–Kutta integration techniques. In the XSG environment, a secure communication system is constructed on the basis of the solution of the differential equations. After that, the planned communication system is implemented on the FPGA board and tested to encrypt images (coloured images). The histogram, entropy and other related security analysis factors are calculated and analysed to test the efficiency of the designed system. Six statistical methods were employed to provide a high level of image encryption in this work. Findings have shown that the proposed system generates (with stable, fast and robust performance) pseudorandom bits that can be successfully used to encrypt the data bits. The simulation and FPGA results are in good agreement; however, the security analysis factors prove that the system can be successfully adopted for image encryption purposes in real-time applications.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
D. Blackmore, “The mathematical theory of chaos,” Comput. Math. with Appl., vol. 12, no. 3-4 PART 2, pp. 1039–1045, 1986, doi: 10.1016/0898-1221(86)90439-6.
W. Der Chang, “Digital secure communication via chaotic systems,” Digit. Signal Process. A Rev. J., vol. 19, no. 4, pp. 693–699, 2009, doi: 10.1016/j.dsp.2008.03.004.
T. Yang, C. W. Wu, and L. O. Chua, “Cryptography based on chaotic systems,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 44, no. 5, pp. 469–472, 1997, doi: 10.1109/81.572346.
A. Soleymani, M. J. Nordin, and E. Sundararajan, “A chaotic cryptosystem for images based on Henon and Arnold cat map,” Sci. World J., vol. 2014, 2014, doi: 10.1155/2014/536930.
V. Milanović and M. E. Zaghloul, “Improved masking algorithm for chaotic communications systems,” Electron. Lett., vol. 32, no. 1, pp. 11–12, 1996, doi: 10.1049/el:19960004.
L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” vol. 64, no. 8, pp. 821–825, 1990.
I. A. Kamil, “Self-synchronization in chaotic systems,” Journal of Engineering and Applied Sciences, vol. 7, no. 6. pp. 411–417, 2012, doi: 10.3923/jeasci.2012.411.417.
S. N. Tambe-Jagtap, “A Survey of Cryptographic Algorithms in Cybersecurity: From Classical Methods to Quantum-Resistant Solutions”, SHIFRA, vol. 2023, pp. 43–52, Jun. 2023, doi: 10.70470/SHIFRA/2023/006.
A. A. Elkouny, “Design and implementation of synchronized VHDL Lorenz chaotic encryption system,” 2014 9th Int. Conf. Informatics Syst. INFOS 2014, pp. CNs1–CNs6, 2015, doi: 10.1109/INFOS.2014.7036713.
M. Eisencraft and A. M. Batista, “Discrete-time chaotic systems synchronization performance under additive noise,” Signal Processing, vol. 91, no. 8, pp. 2127–2131, 2011, doi: 10.1016/j.sigpro.2011.01.021.
Y. Zhang, “A chaotic system based image encryption scheme with identical encryption and decryption algorithm,” Chinese J. Electron., vol. 26, no. 5, pp. 1022–1031, 2017, doi: 10.1049/cje.2017.08.022.
M. Transport, “Real Time Implementation of Secure Communication System Based On Synchronization of Hyper Chaotic Systems 2016 , 33 rd NATIONAL RADIO SCIENCE CONFERENCE,” 2016 , 33 rd Natl. RADIO Sci. Conf., no. Nrsc, pp. 159–167, 2016.
H. M. M. Alibraheemi, Q. Al-Gayem, and E. A. Hussein, “Four dimensional hyperchaotic communication system based on dynamic feedback synchronization technique for image encryption systems,” Int. J. Electr. Comput. Eng., vol. 12, no. 1, p. 957, Feb. 2022, doi: 10.11591/ijece.v12i1.pp957-965.
J. S. Lin, C. F. Huang, T. L. Liao, and J. J. Yan, “Design and implementation of digital secure communication based on synchronized chaotic systems,” Digit. Signal Process. A Rev. J., vol. 20, no. 1, pp. 229–237, 2010, doi: 10.1016/j.dsp.2009.04.006.
Q. Yang et al., “FPGA implementation of color image encryption using a new chaotic map,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 7, no. 1, pp. 129–137, 2019, doi: 10.11591/ijeecs.v13.i1.pp129-137.
T. T. K. Hue, C. Van Lam, T. M. Hoang, and S. Al Assad, “Implementation of secure SPN chaos-based cryptosystem on FPGA,” 2012 IEEE Int. Symp. Signal Process. Inf. Technol. ISSPIT 2012, no. August 2014, pp. 129–134, 2012, doi: 10.1109/ISSPIT.2012.6621274.
M. Amin, O. S. Faragallah, and A. A. Abd El-Latif, “A chaotic block cipher algorithm for image cryptosystems,” Commun. Nonlinear Sci. Numer. Simul., vol. 15, no. 11, pp. 3484–3497, 2010, doi: 10.1016/j.cnsns.2009.12.025.
A. A. Abd El-Latif, X. Niu, and M. Amin, “A new image cipher in time and frequency domains,” Opt. Commun., vol. 285, no. 21–22, pp. 4241–4251, 2012, doi: 10.1016/j.optcom.2012.06.041.
M. Garcia-Bosque, A. Pérez-Resa, C. Sánchez-Azqueta, C. Aldea, and S. Celma, “A New Technique for Improving the Security of Chaos Based Cryptosystems,” Proc. - IEEE Int. Symp. Circuits Syst., vol. 2018-May, pp. 0–4, 2018, doi: 10.1109/ISCAS.2018.8351195.
B. H. Prasetio, E. Setiawan, and A. Muttaqin, “Image Encryption using Simple Algorithm on FPGA,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 13, no. 4, p. 1153, 2015, doi: 10.12928/telkomnika.v13i4.1787.
S. S. H. Shah and G. Raja, “FPGA implementation of chaotic based AES image encryption algorithm,” IEEE 2015 Int. Conf. Signal Image Process. Appl. ICSIPA 2015 - Proc., pp. 574–577, 2016, doi: 10.1109/ICSIPA.2015.7412256.
B. Sinha, S. Kumar, and C. Pradhan, “Comparative analysis of color image encryption using 3D chaotic maps,” Int. Conf. Commun. Signal Process. ICCSP 2016, pp. 332–335, 2016, doi: 10.1109/ICCSP.2016.7754150.
K. W. Wong, “A fast chaotic cryptographic scheme with dynamic look-up table,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 298, no. 4, pp. 238–242, 2002, doi: 10.1016/S0375-9601(02)00431-0.
W. ALEXAN, M. ELKANDOZ, M. MASHALY,E AZAB, A ABOSHOUSHA, “Color Image Encryption Through Chaos and KAA Map,” Complexity, vol. 2019, 2023, doi: 10.1109/ACCESS.2023.3242311.
A. Salih, Z. Abdulrazaq, H. Ghanim Ayoub, “Design and Enhancing Security Performance of Image Cryptography,” Complexity, vol. 2019, 2024, doi.org/10.21123/bsj.2024.10521.
R. Barboza, “Dynamics of a hyperchaotic Lorenz system,” Int. J. Bifurc. Chaos, vol. 17, no. 12, pp. 4285–4294, 2007, doi: 10.1142/S0218127407019950.
M. F. Fathoni and A. I. Wuryandari, “Comparison between Euler, Heun, Runge-Kutta and Adams-Bashforth-Moulton integration methods in the particle dynamic simulation,” Proc. 2015 4th Int. Conf. Interact. Digit. Media, ICIDM 2015, no. Icidm, 2016, doi: 10.1109/IDM.2015.7516314.
U. F. Fak and S. Say, “COMPARISON OF RUNGE-KUTTA METHODS OF ORDER 4 AND 5 ON LORENZ EQUATION Emre SERMUTLU 1,” pp. 61–69, 2004.
A. Parnak, Y. Baleghi, and J. Kazemitabar, “A Novel Image Splicing Detection Algorithm Based on Generalized and Traditional Benford’s Law,” Int. J. Eng. Trans. A Basics, vol. 35, no. 4, pp. 626–634, 2022, doi: 10.5829/ije.2022.35.04a.02.
A. Mehdizadeh, M. Mohammadpoor, and Z. Soltanian, “Secured route optimization and micro-mobility with enhanced handover scheme in mobile IPv6 networks,” Int. J. Eng. Trans. B Appl., vol. 29, no. 11, pp. 1530–1538, 2016, doi: 10.5829/idosi.ije.2016.29.11b.06.
T. G. Babu and V. Jayalakshmi, “Conglomerate Energy Efficient Elgamal Encryption Based Data Aggregation Cryptosystems in Wireless Sensor Network,” Int. J. Eng. Trans. B Appl., vol. 35, no. 2, pp. 417–424, 2022, doi: 10.5829/ije.2022.35.02b.18.
H. Nasiraee, “DoS-Resistant Attribute-Based Encryption in Mobile Cloud Computing with Revocation,” Int. J. Eng., vol. 32, no. 9, pp. 1290–1298, 2019, doi: 10.5829/ije.2019.32.09c.09.
N. M. Dyamannavr, N. G. Kurahatti, and A. Christina, “Design and implementation of field programmable gate array based baseband processor for passive radio frequency identification tag,” Int. J. Eng. Trans. A Basics, vol. 30, no. 1, pp. 127–133, 2017, doi: 10.5829/idosi.ije.2017.30.01a.16.
M. Ashourian, N. Daneshmandpour, O. Sharifi Tehrani, and P. Moallem, “Real time implementation of a license plate location recognition system based on adaptive morphology,” Int. J. Eng. Trans. B Appl., vol. 26, no. 11, pp. 1347–1356, 2013, doi: 10.5829/idosi.ije.2013.26.11b.10.
Y. Karimi, S. Rashahmadi, and R. Hasanzadeh, “The effects of newmark method parameters on errors in dynamic extended finite element method using response surface method,” Int. J. Eng. Trans. A Basics, vol. 31, no. 1, pp. 50–57, 2018, doi: 10.5829/ije.2018.31.01a.08.
F. Yu et al., “Analysis and FPGA Realization of a Novel 5D Hyperchaotic Four-Wing Memristive System, Active Control Synchronization, and Secure Communication Application,” Complexity, vol. 2019, 2019, doi: 10.1155/2019/4047957.
Y. Wu, J. P. Noonan, and S. Agaian, “NPCR and UACI Randomness Tests for Image Encryption,” Cyberjournals.Com, 2011.
G. Alvarez and S. Li, “Some basic cryptographic requirements for chaos-based cryptosystems,” Int. J. Bifurc. Chaos, vol. 16, no. 8, pp. 2129–2151, 2006, doi: 10.1142/S0218127406015970.
W. Wang et al., “An encryption algorithm based on combined chaos in body area networks,” Comput. Electr. Eng., vol. 65, pp. 282–291, 2018, doi: 10.1016/j.compeleceng.2017.07.026.
Z. Bashir, J. Watróbski, T. Rashid, S. Zafar, and W. Salabun, “Chaotic dynamical state variables selection procedure based image encryption scheme,” Symmetry (Basel)., vol. 9, no. 12, 2017, doi: 10.3390/sym9120312.
X. Wu, K. Wang, X. Wang, H. Kan, and J. Kurths, “Color image DNA encryption using NCA map-based CML and one-time keys,” Signal Processing, vol. 148, pp. 272–287, 2018, doi: 10.1016/j.sigpro.2018.02.028.
X. Wang, X. Zhu, X. Wu, and Y. Zhang, “Image encryption algorithm based on multiple mixed hash functions and cyclic shift,” Opt. Lasers Eng., vol. 107, no. December 2016, pp. 370–379, 2018, doi: 10.1016/j.optlaseng.2017.06.015.
M. L. Barakat, A. S. Mansingka, A. G. Radwan, and K. N. Salama, “Hardware stream cipher with controllable chaos generator for colour image encryption,” IET Image Process., vol. 8, no. 1, pp. 33–43, 2014, doi: 10.1049/iet-ipr.2012.0586
H. Omotunde and M. Ahmed, “A Comprehensive Review of Security Measures in Database Systems: Assessing Authentication, Access Control, and Beyond,” Dec. 10, 2023, Mesopotamian journal of Cybersecurity. doi: 10.58496/MJCS/2023/016.
R. M. Al-Amri, D. N. Hamood, and A. K. Farhan, “Theoretical Background of Cryptography,” Dec. 10, 2023, Mesopotamian journal of Cybersecurity. doi: 10.58496/MJCS/2023/002.