Robust and Efficient Methods for Key Generation using Chaotic Maps and A2C Algorithm
Main Article Content
Abstract
In the current digital landscape, information security has become a critical necessity given the escalating frequency and sophistication of cyberattacks across global computing networks. Cryptography is the science and practice of securing information by transforming it into a format that is unreadable or inaccessible to unauthorized parties. The strength of the cryptography algorithm lies in the strength of used encryption key. Recently, the nonlinear behavior of chaotic maps has been utilized as a random source to generate robust key stream bits for cryptographic purposes. The aim of this paper is to introduce an efficient and robust system for generating strong key stream bits against different types of attacks. The proposed system implemented six proposed scenarios for generating a highly strong key stream bits based on different 5-types of chaotic maps (Tent, Ikeda, Chua's, Rössler and Double Pendulum). In the first five scenarios, use each map with Deep-Reinforcement Learning (DRL) algorithm called Advantage Actor-Critic (A2C), while in the sixth scenario, the fusion of all above five chaotic maps with Advantage Actor-Critic (A2C) are used at the same time. For each scenario of the proposed system generates three different lengths of key stream bits (128-bit, 192-bit, and 256-bit). To evaluate the robustness, randomness, and effectiveness of the proposed system, several types of tests were applied like NIST, brute-force attack, Auto Correlation (AC), Cross Correlation (CC), and Discrete Fourier Transform (DFT). All the obtained results indicated to the highly robustness and highly strength of generated key stream bits for all six proposed scenarios of the proposed system.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
[1] M. S. Rathore et al., “A novel trust-based security and privacy model for Internet of Vehicles using encryption and steganography,” Computers and Electrical Engineering, vol. 102, Sep. 2022, doi: 10.1016/j.compeleceng.2022.108205.
[2] A. A. Salih, Z. A. Abdulrazaq, and H. G. Ayoub, “Design and Enhancing Security Performance of Image Cryptography System Based on Fixed Point Chaotic Maps Stream Ciphers in FPGA,” Baghdad Science Journal, vol. 21, no. 5 SI, pp. 1754–1764, 2024, doi: 10.21123/bsj.2024.10521.
[3] R. Naik and U. Singh, “Secured 6-Digit OTP Generation using B-Exponential Chaotic Map,” 2021. [Online]. Available: www.ijacsa.thesai.org
[4] R. B. Prajapati and S. D. Panchal, “Enhanced Approach To Generate One Time Password (OTP) Using Quantum True Random Number Generator (QTRNG),” International Journal of Computing and Digital Systems, vol. 15, no. 1, pp. 279–292, 2024, doi: 10.12785/ijcds/150122.
[5] L. Baldanzi et al., “Cryptographically secure pseudo-random number generator IP-core based on SHA2 algorithm,” Sensors (Switzerland), vol. 20, no. 7, Apr. 2020, doi: 10.3390/s20071869.
[6] U. Zia, M. McCartney, B. Scotney, J. Martinez, and A. Sajjad, “A novel pseudo-random number generator for IoT based on a coupled map lattice system using the generalised symmetric map,” SN Appl Sci, vol. 4, no. 2, Feb. 2022, doi: 10.1007/s42452-021-04919-4.
[7] S. A. S. Hussien, B. N. Al Din Abed, and K. A. Ibrahim, “Encrypting Text Messages via Iris Recognition and Gaze Tracking Technology,” Mesopotamian Journal of CyberSecurity, vol. 5, no. 1, pp. 90–103, Jan. 2025, doi: 10.58496/MJCS/2025/007.
[8] M. Farajallah, M. Abutaha, M. Abu Joodeh, O. Salhab, and N. Jweihan, “PSEUDO RANDOM NUMBER GENERATOR BASED ON LOOK-UP TABLE AND CHAOTIC MAPS,” J Theor Appl Inf Technol, vol. 31, p. 20, 2020, [Online]. Available: www.jatit.org
[9] M. D. Al-Hassani, “A Novel Technique for Secure Data Cryptosystem Based on Chaotic Key Image Generation,” Baghdad Science Journal, vol. 19, no. 4, pp. 905–913, 2022, doi: 10.21123/bsj.2022.19.4.0905.
[10] M. M. Hoobi, “Multilevel Cryptography Model using RC5, Twofish, and Modified Serpent Algorithms,” Iraqi Journal of Science, vol. 65, no. 6, pp. 3434–3450, 2024, doi: 10.24996/ijs.2024.65.6.37.
[11] N. H. M. Ali, M. M. Hoobi, and D. F. Saffo, “Development of Robust and Efficient Symmetric Random Keys Model based on the Latin Square Matrix,” Mesopotamian Journal of CyberSecurity, vol. 4, no. 3, pp. 203–215, 2024, doi: 10.58496/MJCS/2024/023.
[12] I. A. Abdulmunem and M. M. Hoobi, “Enhanced DES Algorithm Using Efficient Classical Algorithm,” Iraqi Journal of Science, vol. 65, no. 12, pp. 7251–7275, 2024, doi: 10.24996/ijs.2024.65.12.37.
[13] A. T. Maolood, E. K. Gbashi, and E. S. Mahmood, “Novel lightweight video encryption method based on ChaCha20 stream cipher and hybrid chaotic map,” International Journal of Electrical and Computer Engineering, vol. 12, no. 5, pp. 4988–5000, Oct. 2022, doi: 10.11591/ijece.v12i5.pp4988-5000.
[14] M. Alawida, J. Sen Teh, A. Mehmood, A. Shoufan, and W. H. Alshoura, “A chaos-based block cipher based on an enhanced logistic map and simultaneous confusion-diffusion operations,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 10, pp. 8136–8151, 2022, doi: 10.1016/j.jksuci.2022.07.025.
[15] A. Zellagui, N. Hadj-Said, and A. Ali-Pacha, “A new hash function inspired by sponge construction using chaotic maps,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 26, no. 2, pp. 529–559, 2023, doi: 10.1080/09720529.2021.1961900.
[16] N. E. El-Meligy, T. O. Diab, A. S. Mohra, A. Y. Hassan, and W. I. El-Sobky, “A Novel Dynamic Mathematical Model Applied in Hash Function Based on DNA Algorithm and Chaotic Maps,” Mathematics, vol. 10, no. 8, Apr. 2022, doi: 10.3390/math10081333.
[17] J. Liu, Y. Wang, Q. Han, and J. Gao, “A Sensitive Image Encryption Algorithm Based on a Higher-Dimensional Chaotic Map and Steganography,” International Journal of Bifurcation and Chaos, vol. 32, no. 01, p. 2250004, 2022, doi: 10.1142/S0218127422500043.
[18] M. Bhandari, S. Panday, C. P. Bhatta, and S. P. Panday, “Image Steganography Approach Based Ant Colony Optimization with Triangular Chaotic Map,” in Proceedings of 2nd International Conference on Innovative Practices in Technology and Management, ICIPTM 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 429–434. doi: 10.1109/ICIPTM54933.2022.9753917.
[19] K. Wang, T. Gao, D. You, X. Wu, and H. Kan, “A secure dual-color image watermarking scheme based 2D DWT, SVD and Chaotic map,” Multimed Tools Appl, vol. 81, no. 5, pp. 6159–6190, 2022, doi: 10.1007/s11042-021-11725-y.
[20] M. Irfan and M. A. Khan, “Cryptographically Secure Pseudo-Random Number Generation (CS-PRNG) Design using Robust Chaotic Tent Map (RCTM),” Aug. 2024, [Online]. Available: http://arxiv.org/abs/2408.05580
[21] E. İnce, B. Karakaya, and M. Türk, “Designing hardware for a robust high-speed cryptographic key generator based on multiple chaotic systems and its FPGA implementation for real-time video encryption,” Multimed Tools Appl, vol. 83, no. 24, pp. 64499–64532, Jul. 2024, doi: 10.1007/s11042-023-17972-5.
[22] J. Ding, K. Chen, Y. Wang, N. Zhao, W. Zhang, and N. Yu, “Discop: Provably Secure Steganography in Practice Based on ‘Distribution Copies,’” 2023, doi: 10.1109/SP46215.2023.00155.
[23] A. Daoui, M. Yamni, S. A. Chelloug, M. A. Wani, and A. A. A. El-Latif, “Efficient Image Encryption Scheme Using Novel 1D Multiparametric Dynamical Tent Map and Parallel Computing,” Mathematics, vol. 11, no. 7, Apr. 2023, doi: 10.3390/math11071589.
[24] A. Al-Daraiseh, Y. Sanjalawe, S. Al-E’mari, S. Fraihat, M. Bany Taha, and M. Al-Muhammed, “Cryptographic Grade Chaotic Random Number Generator Based on Tent-Map,” Journal of Sensor and Actuator Networks, vol. 12, no. 5, Oct. 2023, doi: 10.3390/jsan12050073.
[25] D. F. M. Oliveira, “Mapping Chaos: Bifurcation Patterns and Shrimp Structures in the Ikeda Map,” Aug. 2024, [Online]. Available: http://arxiv.org/abs/2408.11254
[26] N. Kuznetsov, T. Mokaev, V. Ponomarenko, E. Seleznev, N. Stankevich, and L. Chua, “Hidden attractors in Chua circuit: mathematical theory meets physical experiments,” Nonlinear Dyn, vol. 111, no. 6, pp. 5859–5887, Mar. 2023, doi: 10.1007/s11071-022-08078-y.
[27] R. Rocha and R. O. Medrano-T, “Chua Circuit based on the Exponential Characteristics of Semiconductor Devices,” Dec. 2021, doi: 10.1016/j.chaos.2021.111761.
[28] B. Arpacı, E. Kurt, and K. Çelik, “A new algorithm for the colored image encryption via the modified Chua’s circuit,” Engineering Science and Technology, an International Journal, vol. 23, no. 3, pp. 595–604, Jun. 2020, doi: 10.1016/j.jestch.2019.09.001.
[29] Z. Galias, “Continuation-based method to find periodic windows in bifurcation diagrams with applications to the Chua’s circuit with a cubic nonlinearity,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 9, pp. 3784–3793, Sep. 2021, doi: 10.1109/TCSI.2021.3089420.
[30] B. Emin and Z. Musayev, “Chaos-based Image Encryption in Embedded Systems using Lorenz-Rossler System,” Chaos Theory and Applications, vol. 5, no. 3, pp. 153–159, 2023, doi: 10.51537/chaos.1246581.
[31] B. Kharabian and H. Mirinejad, “Synchronization of Rossler chaotic systems via hybrid adaptive backstepping/sliding mode control,” Results in Control and Optimization, vol. 4, no. May, p. 100020, 2021, doi: 10.1016/j.rico.2021.100020.
[32] J. P. Parker, D. Goluskin, and G. M. Vasil, “A study of the double pendulum using polynomial optimization,” Jun. 2021, doi: 10.1063/5.0061316.
[33] S. Cabrera, E. D. Leonel, and A. C. Marti, “Regular and chaotic phase space fraction in the double pendulum,” Dec. 2023, [Online]. Available: http://arxiv.org/abs/2312.13436
[34] S. R. de Oliveira, “Deterministic chaos: A pedagogical review of the double pendulum case,” Revista Brasileira de Ensino de Fisica, vol. 46, 2024, doi: 10.1590/1806-9126-RBEF-2024-0060.
[35] J. J. López and V. J. García-Garrido, “Chaos and Regularity in the Double Pendulum with Lagrangian Descriptors,” Mar. 2024, [Online]. Available: http://arxiv.org/abs/2403.07000
[36] R. B. Naik and U. Singh, “A Review on Applications of Chaotic Maps in Pseudo-Random Number Generators and Encryption,” Annals of Data Science, vol. 11, no. 1, pp. 25–50, 2022, doi: 10.1007/s40745-021-00364-7.
[37] R. S. Abdulaali and R. K. Jamal, “A Comprehensive Study and Analysis of the Chaotic Chua Circuit,” Iraqi Journal of Science, vol. 63, no. 2, pp. 556–570, 2022, doi: 10.24996/ijs.2022.63.2.13.
[38] R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel, “A Survey of Zero-shot Generalisation in Deep Reinforcement Learning,” Nov. 2021, doi: 10.1613/jair.1.14174.
[39] H. Dong, Z. Ding, and S. Zhang, Deep reinforcement learning: Fundamentals, research and applications. Springer Singapore, 2020. doi: 10.1007/978-981-15-4095-0.
[40] Kyriakos G., Vamvoudakis, Yan Wan, Frank L. Lewis, and Derya Cansever, Handbook of Reinforcement Learning and Control, vol. 325. in Studies in Systems, Decision and Control, vol. 325. Cham: Springer International Publishing, 2021. doi: 10.1007/978-3-030-60990-0.
[41] D. Hortelano et al., “A comprehensive survey on reinforcement-learning-based computation offloading techniques in Edge Computing Systems,” Jul. 01, 2023, Academic Press. doi: 10.1016/j.jnca.2023.103669.
[42] S. Qin et al., “An Optimized Advantage Actor-Critic Algorithm for Disassembly Line Balancing Problem Considering Disassembly Tool Degradation,” Mathematics, vol. 12, no. 6, Mar. 2024, doi: 10.3390/math12060836.
[43] F. Ye, S. Zhang, P. Wang, and C.-Y. Chan, “A Survey of Deep Reinforcement Learning Algorithms for Motion Planning and Control of Autonomous Vehicles,” May 2021, [Online]. Available: http://arxiv.org/abs/2105.14218
[44] A. Plaat, Deep Reinforcement Learning. Springer Nature, 2022. doi: 10.1007/978-981-19-0638-1.
[45] L. Canese et al., “Multi-agent reinforcement learning: A review of challenges and applications,” Jun. 01, 2021, MDPI AG. doi: 10.3390/app11114948.
[46] N. Ketkar and J. Moolayil, Deep Learning with Python. 2021. doi: 10.1007/978-1-4842-5364-9.
[47] C. Zhou, B. Huang, H. Hassan, and P. Fränti, “Attention-based advantage actor-critic algorithm with prioritized experience replay for complex 2-D robotic motion planning,” J Intell Manuf, vol. 34, no. 1, pp. 151–180, Jan. 2023, doi: 10.1007/s10845-022-01988-z.
[48] M. Monaci, V. Agasucci, and G. Grani, “An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents,” Eur J Oper Res, vol. 312, no. 3, pp. 910–926, Feb. 2024, doi: 10.1016/j.ejor.2023.07.037.
[49] “Custom Policy Network — Stable Baselines 2.10.3a0 documentation.” Accessed: Dec. 13, 2024. [Online]. Available: https://stable-baselines.readthedocs.io/en/master/guide/custom_policy.html
[50] “Policy Networks — Stable Baselines 2.10.3a0 documentation.” Accessed: Dec. 13, 2024. [Online]. Available: https://stable-baselines.readthedocs.io/en/master/modules/policies.html?highlight=net_arch
[51] L. E. Bassham et al., “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” Gaithersburg, MD, 2022. doi: 10.6028/NIST.SP.800-22r1a.
[52] Y. Zhang, L. Zhang, Z. Zhong, L. Yu, M. Shan, and Y. Zhao, “Hyperchaotic image encryption using phase-truncated fractional Fourier transform and DNA-level operation,” Opt Lasers Eng, vol. 143, p. 106626, 2021, doi: https://doi.org/10.1016/j.optlaseng.2021.106626.
[53] Y. A. Liu et al., “A dynamic AES cryptosystem based on memristive neural network,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-13286-y.
[54] A. Tsuneda, “Auto-Correlation Functions of Chaotic Binary Sequences Obtained by Alternating Two Binary Functions,” Dynamics, vol. 4, no. 2, pp. 272–286, Jun. 2024, doi: 10.3390/dynamics4020016.
[55] J. Ayad and M. A. Jalil , Trans., “Robust Color Image Encryption Using 3D Chaotic Maps and S-Box Algorithms”, BJN, vol. 2024, pp. 148–161, Aug. 2024, doi: 10.58496/BJN/2024/015.
[56] L. Hussain, “Fortifying AI Against Cyber Threats Advancing Resilient Systems to Combat Adversarial Attacks”, EDRAAK, vol. 2024, pp. 26–31, Mar. 2024, doi: 10.70470/EDRAAK/2024/004.