CNNs in Image Forensics: A Systematic Literature Review of Copy-Move, Splicing, Noise Detection, and Data Poisoning Detection Methods
Main Article Content
Abstract
Image forgery, such as copy-move and splicing, poses significant challenges to the authenticity of digital images, and this challenge is exacerbated by the rapid development of image manipulation tools. Convolutional neural networks (CNNs) have shown promise in detecting such forgeries, but limitations remain, especially in detecting small duplicate regions and low-contrast regions, as well as in dealing with optical artefacts such as noise and blur. This systematic literature review examines CNN-based approaches to detect image forgery and explores strategies to mitigate data poisoning attacks, which can compromise the integrity of machine learning models. To our knowledge, there are currently no studies that comprehensively address the integration of forgery detection and splicing techniques with data poisoning detection. Our results reveal that while CNNs are effective in detecting manipulated images, challenges remain in dealing with complex manipulations and adversarial attacks. This review highlights the need for more robust detection methods and defence mechanisms against data poisoning, as current strategies are inadequate to address these issues comprehensively. We propose future research directions that focus on improving model generalizability, incorporating data poisoning defences, and enhancing the interpretability and flexibility of detection systems.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
[1] P. Devarshi, U. Kosarkar and A. Chaube, “Comprehensive study on image forgery techniques using deep learning,” in 2023 11th International Conference on Emerging Trends in Engineering & Technology-Signal and Information Processing (ICETET-SIP), (pp. 1-5). IEEE. doi: 10.1080/23742917.2023.2192888.
[2] K. Lalli, V. K. Shrivastava and R. Shekhar, “Detecting Copy Move Image Forgery using a Deep Learning Model: A Review,” in 2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1), pp. 1-7. IEEE. doi: 10.1109/ICAIA57370.2023.10169568.
[3] R. Agarwal, D. Khudaniya, A. Gupta and K. Grover, “Image forgery detection and deep learning techniques: A review,” in 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1096-1100. IEEE. DOI: 10.1109/ICICCS48265.2020.9121083.
[4] Abhishek, N. Jindal, “Copy move and splicing forgery detection using deep convolution neural network, and semantic segmentation,” Multimedia Tools and Applications, vol. 80, no. 2, pp. 3571-3599, 2021. DOI: 10.1007/s11042-020-09816-3.
[5] R. Ch, M. Radha, M. Mahendar and P. Manasa, “A comparative analysis for deep learning-based approaches for image forgery detection,” International Journal of Systematic Innovation, vol. 8, no. 1, pp. 1-10, 2024. DOI: 10.6977/IJoSI.202403_8(1).0001.
[6] T. T. Nguyen, Q. V. H. Nguyen, T. T. Nguyen, T. T. Huynh, T. T. Nguyen, M. Weidlich and H. Yin, “Manipulating recommender systems: A survey of poisoning attacks and countermeasures,” ACM Computing Surveys, vol. 57, no. 1, pp. 1-39, 2024. DOI: 10.1145/3677328.
[7] L. Stroebel, M. Llewellyn, T. Hartley, T. S. Ip and M. Ahmed, “A systematic literature review on the effectiveness of deepfake detection techniques,” Journal of Cyber Security Technology, vol. 7, no. 2, pp. 83-113, 2023. doi:10.1080/23742917.2023.2192888.
[8] S. Mehta and P. Shukla, “An Efficient Technique for Passive Image Forgery Detection Using Computational Intelligence,” Dark Web Pattern Recognition and Crime Analysis Using Machine Intelligence, pp. 31-45, 2022. DOI: 10.4018/978-1-6684-3942-5.ch003.
[9] S. Kaur, R. Rani, R. Garg and N. Sharma, “State-of-the-art techniques for passive image forgery detection: a brief review,” International Journal of Electronic Security and Digital Forensics, vol. 14, no. 5, pp. 456-473, 2022. doi:10.1504/IJESDF.2022.125403.
[10] D. Tralic, I. Zupancic, S. Grgic and M. Grgic, “CoMoFoD - New Database for Copy-Move Forgery Detection,” in Proceedings ELMAR-2013, September 2013.
[11] J. Dong, W. Wang and T. Tan, “Casia image tampering detection evaluation database,” in 2013 IEEE China Summit and International Conference on Signal and Information Processing, China, pp. 422-426. IEEE. DOI: 10.1109/ChinaSIP.2013.6625374.
[12] R. A. Abdulhasan, S. T. A. Al-latief, and S. M. Kadhim, "Instant learning based on deep neural network with linear discriminant analysis features extraction for accurate iris recognition system," Multimedia Tools and Applications, vol. 83, no. 11, pp. 32099-32122, 2024.
[13] L. Truong, C. Jones, B. Hutchinson, A. August, B. Praggastis, R. Jasper, Nichols N and Tuor A., “Systematic Evaluation of Backdoor Data Poisoning Attacks on Image Classifiers,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 788-789.
[14] T. Liu, Y. Yang and B. Mirzasoleiman, “Friendly Noise against Adversarial Noise: A Powerful Defense against Data Poisoning Attacks,” Advances in Neural Information Processing Systems, vol. 35, pp. 11947-11959, 2022.
[15] A. Cinà, K. Grosse, A. Demontis, B. Biggio, F. Roli and M. Pelillo, “Machine learning security against data poisoning: Are we there yet?,” Computer, vol. 57, no. 3, pp. 26-34, 2024. IEEE. DOI: 10.1109/MC.2023.3299572.
[16] J. Lin, L. Dang, M. Rahouti and K. Xiong, “ML Attack Models: Adversarial Attacks and Data Poisoning Attacks,” arXiv preprint arXiv:2112.02797, 2021. doi:10.48550/arXiv.2112.02797.
[17] K. Aryal, M. Gupta and M. Abdelsalam, “Analysis of label-flip poisoning attack on machine learning based malware detector,” in 2022 IEEE International Conference on Big Data (Big Data), 2022.
[18] S. T. Abd Al-Latief, S. Yussof, A. Ahmad, S. M. Khadim, and R. A. Abdulhasan, "Instant Sign Language Recognition by WAR Strategy Algorithm Based Tuned Machine Learning," International Journal of Networked and Distributed Computing, vol. 12, no. 2, pp. 344-361, 2024.
[19] K. Ganesan, “Machine Learning Data Detection Poisoning Attacks Using Resource Schemes Multi-Linear Regression,” Neural, Parallel, & Scientific Computations, vol. 28, no. 2, pp. 73-82, 2020. doi:10.46719/npsc20202821.
[20] A. Cinà, K. Grosse, A. Demontis, S. Vascon, W. Zellinger, B. Moser, A. Oprea, B. Biggio, M. Pelillo and F. Pelillo, “Wild patterns reloaded: A survey of machine learning security against training data poisoning,” ACM Computing Surveys, vol. 55, no. 13s, pp. 1-39, 2023. doi:10.1145/3585385.
[21] J. Chen, X. Zhang, R. Zhang, C. Wang and L. Liu, “De-pois: An attack-agnostic defense against data poisoning attacks,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 3412-3425, 2021. DOI: 10.1109/TIFS.2021.3080522.
[22] X. Xin, Y. Bai, H. Wang, Y. Mou and J. Tan, “An Anti-Poisoning Attack Method for Distributed AI System,” ournal of Computer and Communications, vol. 9, no. 12, pp. 99-105, 2021. doi:10.4236/jcc.2021.912007.
[23] M. Ramirez, . S. Kim, H. Hamadi, E. Damiani, Y. Byon, T. Kim, C. Cho and C. Yeun, “Poisoning attacks and defenses on artificial intelligence: A survey,” arXiv preprint arXiv:2202.10276, 2022. doi:10.48550/arXiv.2202.10276.
[24] J. Geiping, L. Fowl, G. Somepalli, M. Goldblum, M. Moeller and T. Goldstein, “What doesn't kill you makes you robust (er): How to adversarially train against data poisoning,” arXiv preprint arXiv:2102.13624, 2021. doi:10.48550/arXiv.2102.13624.
[25] M. Goldblum, D. Tsipras, C. Xie, X. Chen, A. Schwarzschild, D. Song, A. Mądry, B. Li and T. Goldstein, “Dataset security for machine learning: Data poisoning, backdoor attacks, and defenses,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 2, pp. 1563-1580, 2022. doi:DOI: 10.1109/TPAMI.2022.3162397.
[26] Z. C. Y. a. W. L. Sheng, “Exploring multi-scale forgery clues for stereo super-resolution image forgery localization,” Pattern Recognition, vol. 161, p. 111230, 2025.
[27] S. Chakraborty, K. Chatterjee and P. Dey, “Detection of Image Tampering Using Deep Learning, Error Levels and Noise Residuals,” Neural Processing Letters, vol. 56, p. 112, 2024. doi:10.1007/s11063-024-11448-9.
[28] B. N. N., H. E., V. K. G., a. R. T. B. and N. B., “A Systematic Approach to Detect Spliced and Forged Images using Deep Learning Technique,” IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES, vol. 11, no. 12, pp. 1806-1815, 2022. doi: 10.48047/IJFANS/V11/I12/191.
[29] H. Machiraju, M. H. Herzog, and P. Frossard, "Frequency-Based Vulnerability Analysis of Deep Learning Models against Image Corruptions," arXiv, arXiv:2306.07178, 2023. [Online]. Available: https://arxiv.org/abs/2306.07178
[30] L. Janutėnas, Janutėnaitė-Bogdanienė and D. J. and Šešok, “Deep Learning Methods to Detect Image Falsification.,” Applied Sciences, vol. 13, no. 13, p. 7694, 2023. doi:10.3390/app13137694.
[31] D. Budgen and P. Brereton, “Performing systematic literature reviews in software engineering,” in In 2006 Proceedings of the 28th international conference on Software engineering, pp. 1051-1052. doi:10.1145/1134285.1134500.
[32] Y. Pan, X. Ge, C. Fang and Y. Fan, “A systematic literature review of android malware detection using static analysis,” IEEE Access, vol. 8, pp. 116363-116379, 2020. DOI: 10.1109/ACCESS.2020.3002842.
[33] T. Qazi, K. Hayat, S. Khan, S. Madani, I. Khan, J. Kołodziej, H. Li, W. Lin, K. Yow and C. Xu, “Survey on blind image forgery detection,” IET Image Processing, vol. 7, no. 7, pp. 660-670, 2013. doi:10.1049/iet-ipr.2012.0388.
[34] I. Zedan, M. Soliman, K. Elsayed and H. Onsi, “Copy move forgery detection techniques: a comprehensive survey of challenges and future directions,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 7, 2021.
[35] K. Sunitha and K. A. N., “Efficient keypoint based copy move forgery detection method using hybrid feature extraction,” in 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), pp. 670-675. IEEE, 2020. DOI: 10.1109/ICIMIA48430.2020.9074951.
[36] H. Chen, X. Yang and Y. Lyu, “Copy-move forgery detection based on keypoint clustering and similar neighborhood search algorithm,” IEEE Access, vol. 8, pp. 36863-36875, 2020. DOI: 10.1109/ACCESS.2020.2974804.
[37] K. Rehman and S. Islam, “A Keypoint-Based Technique for Detecting the Copy Move Forgery in Digital Images,” in International Conference on Micro-Electronics and Telecommunication Engineering, Singapore: Springer Nature Singapore, pp. 797-811. 2023. doi:10.1007/978-981-99-9562-2_66.
[38] X. Wang, C. Wang, L. Wang, H. Yang and P. Niu, “Robust and effective multiple copy move forgeries detection,” Pattern Analysis and Applications, vol. 24, pp. 1025-1046, 2021. doi:10.1007/s10044-021-00968-y.
[39] K. Sunitha and K. A. N., “Efficient keypoint based copy move forgery detection method using hybrid feature extraction,” in 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore, India, pp. 670-675. IEEE. 2020. DOI: 10.1109/ICIMIA48430.2020.9074951.
[40] P. Niu, C. Wang, W. Chen, H. Yang and X. Wang, “Fast and effective Keypoint-based image copy-move forgery detection using complex-valued moment invariants,” Journal of Visual Communication and Image Representation, vol. 77, p. 103068, 2021. doi:10.1016/j.jvcir.2021.103068.
[41] I. T. Ahmed, B. T. Hammad and N. Jamil, “Image copy-move forgery detection algorithms based on spatial feature domain,” in 2021 IEEE 17th International colloquium on signal processing & its applications (CSPA), pp. 92-96. IEEE. DOI: 10.1109/CSPA52141.2021.9377272.
[42] G. Tahaoğlu and G. Ulutas, “Copy-move forgery detection and localization with hybrid neural network approach,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 28, no. 5, pp. 748-760, 2022. doi: 10.5505/pajes.2022.88714.
[43] G. Yue, Q. Duan, R. Liu, W. Peng, Y. Liao and J. Liu, “SMDAF: A novel keypoint based method for copy‐move forgery detection,” IET Image Processing, vol. 16, no. 13, pp. 3589-3602, 2022. doi:10.1049/ipr2.12578.
[44] X. Y. Wang, C. Wang, L. Wang, H. Y. Yang and P. Niu, “Robust and effective multiple copy-move forgeries detection and localization,” Pattern Analysis and Applications, vol. 24, pp. 1025-1046, 2021. doi:10.1007/s10044-021-00968-y.
[45] A. Rani, A. Jain and M. Kumar, “Identification of copy-move and splicing based forgeries using advanced SURF and revised template matching,” Multimedia Tools and Applications, vol. 80, no. 16, pp. 23877-23898, 2021. doi:10.1007/s11042-021-10810-6.
[46] K. Gayathri and P. S. Deepthi, “An overview of copy move forgery detection approaches,” Computer Science & Engineering International journal, vol. 12, no. 6, pp. 81-94, 2022. DOI:10.5121/cseij.2022.12609 .
[47] C. Wang, Z. Zhang and X. Zhou, “An Image Copy-Move Forgery Detection Scheme Based on A-KAZE and SURF Features,” Symmetry, vol. 10, no. 12, pp. 1-20, 2019. doi:10.3390/sym10120706.
[48] R. Dixit and R. Naskar, “Region duplication detection in digital images based on Centroid Linkage Clustering of key – points and graph similarity matching,” Multimedia Tools and Applications, vol. 78, p. 13819–13840, 2019. doi:10.1007/s11042-018-6666-1.
[49] M. Thiiban , T.M., N. Abd Warif, A. Ismail and A. Mat , “An Evaluation of Convolutional Neural Network (CNN) Model for Copy-Move and Splicing Forgery Detection,” International Journal of Intelligent Systems and Applications in Engineering, vol. 11, no. 2, pp. 730-740, 2023.
[50] E. Qazi, T. Zia and A. Almorjan, “Deep learning-based digital image forgery detection system,” Applied Sciences, vol. 12, no. 6, p. 2851, 2022. doi:10.3390/app12062851.
[51] K. Hosny, A. Mortda, N. Lashin and M. Fouda, “A new method to detect splicing image forgery using convolutional neural network.,” Applied Sciences, vol. 13, no. 3, p. 1272, 2023. doi:10.3390/app13031272.
[52] M. Islam, G. Karmakar, J. Kamruzzaman, M. Murshed, G. Kahandawa and N. Parvin, “Detecting splicing and copy-move attacks in color images,” in 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, ACT, Australia, pp. 1-7. IEEE. DOI: 10.1109/DICTA.2018.8615874.
[53] S. Ali, I. Ganapathi, N. Vu, . S. Ali, N. Saxena and N. Werghi, “Image forgery detection using deep learning by recompressing images,” Electronics, vol. 11, no. 3, p. 403, 2022. DOI: 10.1109/DICTA.2018.8615874.
[54] N. Hussien, R. Mahmoud and H. Zayed, “Deep learning on digital image splicing detection using CFA artifacts,” International Journal of Sociotechnology and Knowledge Development (IJSKD), vol. 12, no. 2, pp. 31-44, 2020. DOI: 10.4018/IJSKD.2020040102.
[55] D. Mallick, M. Shaikh, A. Gulhane and T. Maktum, “Copy move and splicing image forgery detection using CNN,” in In ITM Web of Conferences. International Conference on Automation, Computing and Communication 2022 (ICACC-2022), Vol. 44, p. 03052. EDP Sciences. doi:10.1051/itmconf/20224403052.
[56] A. Kuznetsov, “Digital image forgery detection using deep learning approach,” Journal of Physics, vol. 1368, no. 3, p. 032028, 2019. DOI 10.1088/1742-6596/1368/3/032028.
[57] K. Meena and V. Tyagi, “A deep learning based method for image splicing detection,” journal of physics: conference series, vol. 1714, no. 1, p. 012038, 2021. DOI 10.1088/1742-6596/1714/1/012038.
[58] M. Elaskily, H. Elnemr, A. Sedik, M. Dessouky, G. El Banby, O. Elshakankiry, A. Khalaf, H. Aslan, O. Faragallah and F. Abd El-Samie, “A novel deep learning framework for copy-moveforgery detection in images,” Multimedia Tools and Applications, vol. 79, pp. 19167-19192, 2020. doi:10.1007/s11042-020-08751-7.
[59] C. Prakash, A. Kumar, S. Maheshkar and V. Maheshkar, “An integrated method of copy-move and splicing for image forgery detection,” Multimedia Tools and Applications, vol. 77, pp. 26939-26963, 2018. doi:10.1007/s11042-018-5899-3.
[60] J. PATEL and N. BHATT, “COPY-MOVE FORGERY DETECTION-A HYBRID APPROACH,” Journal of Engineering Science and Technology, vol. 17, no. 3, pp. 2000-2019, 2022.
[61] S. Bibi, A. Abbasi, I. Haq, S. Baik and A. Ullah, “Digital image forgery detection using deep autoencoder and CNN features,” Hum. Cent. Comput. Inf. Sci, vol. 11, pp. 1-17, 2021. DOI:10.22967/HCIS.2021.11.032.
[62] K. Hosny, A. Mortda, M. Fouda and N. Lashin, “An efficient cnn model to detect copy-move image forgery,” IEEE Access, vol. 10, pp. 48622-48632, 2022. DOI: 10.1109/ACCESS.2022.3172273.
[63] V. Raghavan, T. Mazzuchi and S. Sarkani, “An improved real time detection of data poisoning attacks in Deep Learning Vision systems,” Discover Artificial Intelligence, vol. 2, no. 1, p. 18, 2022. doi:10.1007/s44163-022-00035-3.
[64] F. F. M. M. D. G. A. S. Martinelli, “Data poisoning attacks over diabetic retinopathy images classification,” 2023 IEEE International Conference on Big Data (BigData), pp. 3698-3703. IEEE, 2023.
[65] N. Peri, N. Gupta, W. Huang, L. Fowl, C. Zhu, S. Feizi, T. Goldstein and J. Dickerson, “Deep k-nn defense against clean-label data poisoning attacks,” Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, vol. Part I 16, pp. 55-70, August 23–28 2020. Springer International Publishing. doi:10.1007/978-3-030-66415-2_4.
[66] A. Omran, S. Mohammed and M. Aljanabi, “Detecting Data Poisoning Attacks in Federated Learning for Healthcare Applications Using Deep Learning,” Iraqi Journal For Computer Science and Mathematics, vol. 4, no. 4, pp. 225-237, 2023. doi:10.52866/ ijcsm.2023.04.04.018.
[67] X. Chen, Y. Ma, S. Lu and Y. Yao, “Boundary augment: A data augment method to defend poison attack,” IET Image Processing, vol. 15, no. 13, pp. 3292-3303, 2021. doi:10.1049/ipr2.12325.
[68] D. Khuu, M. Sober, D. Kaaser, M. Fischer and S. Schulte, “Data Poisoning Detection in Federated Learning,” in Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing, pp. 1549-1558. 2024, doi:10.1145/3605098.3635896.