Healthcare Security in Edge-Fog-Cloud Environment using Blockchain: A Systematic Review
Main Article Content
Abstract
Context: Our domain of expertise is healthcare security, which protects the sensitive information of patients and the integrity of the healthcare services provided to them. As health record digitization grows, along with the adoption of advanced technologies, data protection becomes more complex and vital. Realizing the transformative potential of blockchain (BC) in healthcare security requires critical exploration into the prevailing centralization of sensitive patient information, shedding traditional paradigms, and embracing the digital decentralization enabled by the BC realm. Objectives: The purpose of this study was to analyse prior research and provide a comprehensive overview of the literature on BC-based healthcare security in edge-fog-cloud (EFC) scenarios. Face and researchers, outlining the obstacles they face and offering recommendations to analysts for enhancing this crucial area of study. Methods: The analyses systematically examined healthcare security utilizing BC within the EFC domain across all studies; additionally, four databases—Web of Science (WoS), ScienceDirect, IEEE Xplore Digital Library, and Scopus—were employed from 2019--2024 to analyse their architecture, applications, and performance evaluation. Results: In accordance with our inclusion and exclusion criteria, 97 publications concerning healthcare security utilizing BC in edge, fog, and cloud systems with various approaches and strategies were chosen. Four classes were created from the taxonomy results according to the BC location: healthcare security using BC at the edge, healthcare security using BC in fog, healthcare security using BC in the cloud, and review articles. Discussion: BC facilitates secure and efficient sharing of patient data among different healthcare systems, promoting seamless interoperability of electronic health records (EHRs). Data are also stored in a decentralized manner, which diminishes the danger of breaches because there is no singular point of failure. Additionally, with national tracking protocols via BC, full lifecycle monitoring of pharmaceutical products is ensured, guaranteeing transparency and minimizing counterfeit medication. Conclusion: Although the research domains of healthcare security using BC in EFC differ, they are generally equally important. Through this review, research capabilities are highlighted, and new research domains are expanded.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
[1] R. Kumar and R. Tripathi, “Towards design and implementation of security and privacy framework for Internet of Medical Things (IoMT) by leveraging blockchain and IPFS technology,” Journal of Supercomputing, vol. 77, no. 8, pp. 7916–7955, Aug. 2021, doi: 10.1007/s11227-020-03570-x.
[2] S. Mubeen, P. Nikolaidis, A. DIdic, H. Pei-Breivold, K. Sandstrom, and M. Behnam, “Delay Mitigation in Offloaded Cloud Controllers in Industrial IoT,” IEEE Access, vol. 5, pp. 4418–4430, 2017, doi: 10.1109/ACCESS.2017.2682499.
[3] A. A. Mutlag, M. K. Abd Ghani, N. Arunkumar, M. A. Mohammed, and O. Mohd, “Enabling technologies for fog computing in healthcare IoT systems,” Future Generation Computer Systems, vol. 90, pp. 62–78, Jan. 2019, doi: 10.1016/j.future.2018.07.049.
[4] A. M. Elmisery, S. Rho, and M. Aborizka, “A new computing environment for collective privacy protection from constrained healthcare devices to IoT cloud services,” Cluster Comput, vol. 22, no. 1, pp. 1611–1638, 2019.
[5] H. Hua, Y. Li, T. Wang, N. Dong, W. Li, and J. Cao, “Edge Computing with Artificial Intelligence: A Machine Learning Perspective,” ACM Comput Surv, vol. 55, no. 9, Sep. 2023, doi: 10.1145/3555802.
[6] C. Kotronis et al., “Evaluating Internet of Medical Things (IoMT)-Based Systems from a Human-Centric Perspective,” Dec. 01, 2019, Elsevier B.V. doi: 10.1016/j.iot.2019.100125.
[7] L. Soltanisehat, R. Alizadeh, H. Hao, and K. K. R. Choo, “Technical, Temporal, and Spatial Research Challenges and Opportunities in Blockchain-Based Healthcare: A Systematic Literature Review,” Jan. 01, 2023, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/TEM.2020.3013507.
[8] J. Adler-Milstein, A. J. Holmgren, P. Kralovec, C. Worzala, T. Searcy, and V. Patel, “Electronic health record adoption in US hospitals: The emergence of a digital ‘advanced use’ divide,” Journal of the American Medical Informatics Association, vol. 24, no. 6, pp. 1142–1148, Nov. 2017, doi: 10.1093/jamia/ocx080.
[9] P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud Migration Research: A Systematic Review,” IEEE Transactions on Cloud Computing, vol. 1, no. 2, pp. 142–157, Jul. 2013, doi: 10.1109/TCC.2013.10.
[10] Z. J. Al-Araji, S. S. S. Ahmad, N. Kausar, A. Farhani, E. Ozbilgekahveci, and T. Cagin, “Fuzzy Theory in Fog Computing: Review, Taxonomy, and Open Issues,” IEEE Access, vol. 10, pp. 126931–126956, 2022, doi: 10.1109/ACCESS.2022.3225462.
[11] M. Haghi Kashani and E. Mahdipour, “Load Balancing Algorithms in Fog Computing: A Systematic Review,” IEEE Trans Serv Comput, 2022, doi: 10.1109/TSC.2022.3174475.
[12] Z. J. Al-Araji, S. S. S. Ahmad, N. Kausar, A. Farhani, E. Ozbilgekahveci, and T. Cagin, “Fuzzy Theory in Fog Computing: Review, Taxonomy, and Open Issues,” 2022, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2022.3225462.
[13] Z. J. Al-Araji, S. S. S. Ahmad, H. M. Farhood, A. A. Mutlag, and M. S. Al-Khaldee, “Attack graph-based security metrics: concept, taxonomy, challenges and open issues,” in BIO Web of Conferences, EDP Sciences, Apr. 2024. doi: 10.1051/bioconf/20249700085.
[14] H. Rafique, M. A. Shah, S. U. Islam, T. Maqsood, S. Khan, and C. Maple, “A Novel Bio-Inspired Hybrid Algorithm (NBIHA) for Efficient Resource Management in Fog Computing,” IEEE Access, vol. 7, pp. 115760–115773, 2019, doi: 10.1109/ACCESS.2019.2924958.
[15] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An Overview on Edge Computing Research,” 2020, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2020.2991734.
[16] H. A. Alharbi and M. Aldossary, “Energy-Efficient Edge-Fog-Cloud Architecture for IoT-Based Smart Agriculture Environment,” IEEE Access, vol. 9, pp. 110480–110492, 2021, doi: 10.1109/ACCESS.2021.3101397.
[17] M. Hartmann, U. S. Hashmi, and A. Imran, “Edge computing in smart health care systems: Review, challenges, and research directions,” Transactions on Emerging Telecommunications Technologies, vol. 33, no. 3, Mar. 2022, doi: 10.1002/ett.3710.
[18] A. Rancea, I. Anghel, and T. Cioara, “Edge Computing in Healthcare: Innovations, Opportunities, and Challenges,” Future Internet, vol. 16, no. 9, p. 329, Sep. 2024, doi: 10.3390/fi16090329.
[19] I. Singh, A. Kaur, P. Agarwal, and S. M. Idrees, “Enhancing Security and Transparency in Online Voting through Blockchain Decentralization,” SN Comput Sci, vol. 5, no. 7, Oct. 2024, doi: 10.1007/s42979-024-03286-2.
[20] H. S. Malallah, R. Qashi, L. M. Abdulrahman, M. A. Omer, and A. A. Yazdeen, “Performance Analysis of Enterprise Cloud Computing: A Review,” Journal of Applied Science and Technology Trends, vol. 4, no. 01, pp. 01–12, Feb. 2023, doi: 10.38094/jastt401139.
[21] L. Griebel et al., “A scoping review of cloud computing in healthcare,” BMC Med Inform Decis Mak, vol. 15, no. 1, 2015, doi: 10.1186/s12911-015-0145-7.
[22] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and M. Guizani, “MeDShare: Trust-Less Medical Data Sharing among Cloud Service Providers via Blockchain,” IEEE Access, vol. 5, pp. 14757–14767, Jul. 2017, doi: 10.1109/ACCESS.2017.2730843.
[23] C. Zhang and Y. Chen, “A review of research relevant to the emerging industry trends: Industry 4.0, iot, blockchain, and business analytics,” Mar. 01, 2020, World Scientific. doi: 10.1142/S2424862219500192.
[24] A. Gorkhali, L. Li, and A. Shrestha, “Blockchain: a literature review,” Journal of Management Analytics, vol. 7, no. 3, pp. 321–343, Jul. 2020, doi: 10.1080/23270012.2020.1801529.
[25] W. Rafique, M. Khan, S. Khan, and J. S. Ally, “SecureMed: A Blockchain-Based Privacy-Preserving Framework for Internet of Medical Things,” Wirel Commun Mob Comput, vol. 2023, 2023, doi: 10.1155/2023/2558469.
[26] G. Piccardo, L. Conti, and A. Martino, “Blockchain Technology and Its Potential to Benefit Public Services Provision: A Short Survey,” Aug. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/fi16080290.
[27] K. K. Vaigandla, M. Siluveru, M. Kesoju, and R. Karne, “Review on Blockchain Technology: Architecture, Characteristics, Benefits, Algorithms, Challenges and Applications,” Dec. 10, 2023, Mesopotamian Academic Press. doi: 10.58496/MJCS/2023/012.
[28] P. Bustamante et al., “Government by Code? Blockchain Applications to Public Sector Governance,” 2022, Frontiers Media SA. doi: 10.3389/fbloc.2022.869665.
[29] F. J. de Haro-Olmo, Á. J. Varela-Vaca, and J. A. Álvarez-Bermejo, “Blockchain from the perspective of privacy and anonymisation: A systematic literature review,” Sensors (Switzerland), vol. 20, no. 24, pp. 1–21, Dec. 2020, doi: 10.3390/s20247171.
[30] V. Buterin, J. Illum, M. Nadler, F. Schär, and A. Soleimani, “Blockchain privacy and regulatory compliance: Towards a practical equilibrium,” Blockchain: Research and Applications, vol. 5, no. 1, Mar. 2024, doi: 10.1016/j.bcra.2023.100176.
[31] D. C. G. Valadares, A. Perkusich, A. F. Martins, M. B. M. Kamel, and C. Seline, “Privacy-Preserving Blockchain Technologies,” Aug. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s23167172.
[32] Y. Li, J. Wang, Z. Zhao, and D. Lv, “Hague: a hybrid scaling stateless blockchain,” Peer Peer Netw Appl, vol. 18, no. 1, pp. 1–16, 2025.
[33] A. Alkhateeb, C. Catal, G. Kar, and A. Mishra, “Hybrid Blockchain Platforms for the Internet of Things (IoT): A Systematic Literature Review,” Feb. 01, 2022, MDPI. doi: 10.3390/s22041304.
[34] X. Chen, S. He, L. Sun, Y. Zheng, and C. Q. Wu, “A Survey of Consortium Blockchain and Its Applications,” Cryptography, vol. 8, no. 2, p. 12, 2024.
[35] L. Qu, F. Wen, H. Huang, and Z. Wang, “Aggregation-chain: a consortium blockchain based multi-chain data sharing framework with efficient query,” Cluster Comput, vol. 28, no. 1, pp. 1–16, 2025.
[36] S. Lu et al., “CCIO: a cross-chain interoperability approach for consortium blockchains based on oracle,” Sensors, vol. 23, no. 4, p. 1864, 2023.
[37] S. Sharma, H. K. Shakya, and A. Mishra, “Medical Data Security Using Blockchain With Soft Computing Techniques: A Review,” in The Internet of Medical Things (IoMT): Healthcare Transformation, wiley, 2021, pp. 269–288. doi: 10.1002/9781119769200.ch14.
[38] J. Almalki, “State-of-the-Art Research in Blockchain of Things for HealthCare,” Arab J Sci Eng, 2023, doi: 10.1007/s13369-023-07896-5.
[39] M. Mustafa, M. Alshare, D. Bhargava, R. Neware, B. Singh, and P. Ngulube, “Perceived Security Risk Based on Moderating Factors for Blockchain Technology Applications in Cloud Storage to Achieve Secure Healthcare Systems,” Comput Math Methods Med, vol. 2022, 2022, doi: 10.1155/2022/6112815.
[40] M. Hölbl, M. Kompara, A. Kamišalić, and L. N. Zlatolas, “A systematic review of the use of blockchain in healthcare,” Symmetry (Basel), vol. 10, no. 10, 2018, doi: 10.3390/sym10100470.
[41] S. Khezr, M. Moniruzzaman, A. Yassine, and R. Benlamri, “Blockchain technology in healthcare: A comprehensive review and directions for future research,” Applied Sciences (Switzerland), vol. 9, no. 9, May 2019, doi: 10.3390/app9091736.
[42] T. T. Kuo, H. E. Kim, and L. Ohno-Machado, “Blockchain distributed ledger technologies for biomedical and health care applications,” Nov. 01, 2017, Oxford University Press. doi: 10.1093/jamia/ocx068.
[43] D. Randall, P. Goel, and R. Abujamra, “Blockchain Applications and Use Cases in Health Information Technology,” J Health Med Inform, vol. 08, no. 03, 2017, doi: 10.4172/2157-7420.1000276.
[44] N. Kshetri, “Blockchain and Electronic Healthcare Records [Cybertrust],” Computer (Long Beach Calif), vol. 51, no. 12, pp. 59–63, Dec. 2018, doi: 10.1109/MC.2018.2880021.
[45] N. S. Talwandi and N. Kaur Walia, “Enhancing Security of Cloud Computing Transaction using Blockchain,” in 2023 International Conference on Advances in Computation, Communication and Information Technology, ICAICCIT 2023, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 1133–1139. doi: 10.1109/ICAICCIT60255.2023.10466075.
[46] A. K. Bashir et al., “A Survey on Federated Learning for the Healthcare Metaverse: Concepts, Applications, Challenges, and Future Directions,” IEEE Internet Things J, vol. 10, no. 24, pp. 21873–21891, Apr. 2023, [Online]. Available: http://arxiv.org/abs/2304.00524
[47] M. Humayun, A. Alsirhani, F. Alserhani, M. Shaheen, and G. Alwakid, “Transformative synergy: SSEHCET—bridging mobile edge computing and AI for enhanced eHealth security and efficiency,” Journal of Cloud Computing, vol. 13, no. 1, Dec. 2024, doi: 10.1186/s13677-024-00602-2.
[48] A. A. Abdellatif, A. Z. Al-Marridi, A. Mohamed, A. Erbad, C. F. Chiasserini, and A. Refaey, “SSHealth: Toward Secure, Blockchain-Enabled Healthcare Systems,” IEEE Netw, vol. 34, no. 4, Jun. 2020, doi: 10.1109/MNET.011.1900553.
[49] J. Singh and K. Ghai, “Security and Privacy Mechanisms for the New Generation Healthcare Applications Using Blockchain Technology,” in 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), ICRITO 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi: 10.1109/ICRITO51393.2021.9596107.
[50] R. I. Emon et al., “Privacy-preserved Secure Medical Data Sharing Using Hierarchical Blockchain in Edge Computing,” Annals of Emerging Technologies in Computing, vol. 6, no. 4, pp. 38–48, Oct. 2022, doi: 10.33166/AETiC.2022.04.005.
[51] M. Ejaz, T. Kumar, I. Kovacevic, M. Ylianttila, and E. Harjula, “Health-blockedge: Blockchain-edge framework for reliable low-latency digital healthcare applications,” Sensors, vol. 21, no. 7, Apr. 2021, doi: 10.3390/s21072502.
[52] Z. Ming, M. Zhou, L. Cui, and S. Yang, “FAITH: A Fast Blockchain-Assisted Edge Computing Platform for Healthcare Applications,” IEEE Trans Industr Inform, vol. 18, no. 12, pp. 9217–9226, Dec. 2022, doi: 10.1109/TII.2022.3166813.
[53] Y. Cheng, B. Gong, Z. J. Jia, Y. Y. Yang, Y. He, and X. Zhang, “Efficient and Secure Cross-Domain Sharing of Blockchain Electronic Medical Records Based on Edge Computing,” Security and Communication Networks, vol. 2021, 2021, doi: 10.1155/2021/7310771.
[54] A. H. Sharmila and N. Jaisankar, “Edge Intelligent Agent Assisted Hybrid Hierarchical Blockchain for continuous healthcare monitoring & recommendation system in 5G WBAN-IoT,” Computer Networks, vol. 200, Dec. 2021, doi: 10.1016/j.comnet.2021.108508.
[55] H. Reffad, A. Djenaoui, and A. Alti, “Distributed Secure Services Based on IoT and Blockchain for e-Health Remote Care,” in Proc. Int. Conf. Computer Science’s Complex Systems and Their Applications, 2020.
[56] B. S. Egala, A. K. Pradhan, S. Gupta, K. S. Sahoo, M. Bilal, and K. S. Kwak, “CoviBlock: A Secure Blockchain-Based Smart Healthcare Assisting System,” Sustainability (Switzerland), vol. 14, no. 24, Dec. 2022, doi: 10.3390/su142416844.
[57] Y. Li and M. Tang, “Blockchain-powered distributed data auditing scheme for cloud-edge healthcare system,” Cyber Security and Applications, vol. 1, p. 100017, Dec. 2023, doi: 10.1016/j.csa.2023.100017.
[58] I. Ahmad, S. Abdullah, and A. Ahmed, “IoT-fog-based healthcare 4.0 system using blockchain technology,” Journal of Supercomputing, vol. 79, no. 4, pp. 3999–4020, Mar. 2023, doi: 10.1007/s11227-022-04788-7.
[59] S. R. Mallick, R. K. Lenka, P. K. Tripathy, D. C. Rao, S. Sharma, and N. K. Ray, “A lightweight, secure, and scalable blockchain-fog-iomt healthcare framework with ipfs data storage for healthcare 4.0,” SN Comput Sci, vol. 5, no. 1, p. 198, 2024.
[60] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “BEdgeHealth: A Decentralized Architecture for Edge-Based IoMT Networks Using Blockchain,” IEEE Internet Things J, vol. 8, no. 14, pp. 11743–11757, Jul. 2021, doi: 10.1109/JIOT.2021.3058953.
[61] J. Wu, P. Zhou, Q. Chen, Z. Xu, X. Ding, and H. Jiang, “Blockchain-Based Privacy-Aware Contextual Online Learning for Collaborative Edge-Cloud-Enabled Nursing System in Internet of Things,” IEEE Internet Things J, vol. 10, no. 8, pp. 6703–6717, Apr. 2023, doi: 10.1109/JIOT.2021.3133653.
[62] L. Fetjah, K. Azbeg, O. Ouchetto, and S. J. Andaloussi, “Towards a Smart Healthcare System: An Architecture Based on IoT, Blockchain, and Fog Computing,” International Journal of Healthcare Information Systems and Informatics, vol. 16, no. 4, 2021, doi: 10.4018/IJHISI.20211001.oa16.
[63] J. Ren, J. Li, H. Liu, and T. Qin, “Task Offloading Strategy with Emergency Handling and Blockchain Security in SDN-Empowered and Fog-Assisted Healthcare loT,” Tsinghua Sci Technol, vol. 27, no. 4, pp. 760–776, 2022, doi: 10.26599/TS.
[64] M. A. Salahuddin, A. Al-Fuqaha, M. Guizani, K. Shuaib, and F. Sallabi, “Softwarization of internet of things infrastructure for secure and smart healthcare,” Computer (Long Beach Calif), vol. 50, no. 7, pp. 74–79, 2018.
[65] A. Lakhan et al., “Secure blockchain assisted Internet of Medical Things architecture for data fusion enabled cancer workflow,” Internet of Things, vol. 24, p. 100928, Dec. 2023, doi: 10.1016/j.iot.2023.100928.
[66] A. Lakhan, M. A. Mohammed, S. Kozlov, and J. J. P. C. Rodrigues, “Mobile-fog-cloud assisted deep reinforcement learning and blockchain-enable IoMT system for healthcare workflows,” Transactions on Emerging Telecommunications Technologies, 2021, doi: 10.1002/ett.4363.
[67] I. Ahmad, S. Abdullah, and A. Ahmed, “IoT-fog-based healthcare 4.0 system using blockchain technology,” Journal of Supercomputing, vol. 79, no. 4, pp. 3999–4020, Mar. 2023, doi: 10.1007/s11227-022-04788-7.
[68] M. AI Duhayyim et al., “Integration of fog computing for health record management using blockchain technology,” Computers, Materials and Continua, vol. 71, no. 2, pp. 4135–4149, 2022, doi: 10.32604/cmc.2022.022336.
[69] S. Shukla, S. Thakur, S. Hussain, J. G. Breslin, and S. M. Jameel, “Identification and Authentication in Healthcare Internet-of-Things Using Integrated Fog Computing Based Blockchain Model,” Internet of Things (Netherlands), vol. 15, Sep. 2021, doi: 10.1016/j.iot.2021.100422.
[70] A. H. Mayer, V. F. Rodrigues, C. A. Da Costa, R. Da Rosa Righi, A. Roehrs, and R. S. Antunes, “FogChain: A Fog Computing Architecture Integrating Blockchain and Internet of Things for Personal Health Records,” IEEE Access, vol. 9, pp. 122723–122737, 2021, doi: 10.1109/ACCESS.2021.3109822.
[71] A. Lakhan et al., “Federated-Learning Based Privacy Preservation and Fraud-Enabled Blockchain IoMT System for Healthcare,” IEEE J Biomed Health Inform, vol. 27, no. 2, pp. 664–672, Feb. 2023, doi: 10.1109/JBHI.2022.3165945.
[72] M. J. Baucas, P. Spachos, and K. N. Plataniotis, “Federated Learning and Blockchain-Enabled Fog-IoT Platform for Wearables in Predictive Healthcare,” IEEE Trans Comput Soc Syst, vol. 10, no. 4, pp. 1732–1741, Aug. 2023, doi: 10.1109/TCSS.2023.3235950.
[73] T. M. Fernández-Caramés, I. Froiz-Míguez, O. Blanco-Novoa, and P. Fraga-Lamas, “Enabling the internet of mobile crowdsourcing health things: A mobile fog computing, blockchain and iot based continuous glucose monitoring system for diabetes mellitus research and care,” Sensors (Switzerland), vol. 19, no. 15, Aug. 2019, doi: 10.3390/s19153319.
[74] P. G. Shynu, V. G. Menon, R. L. Kumar, S. Kadry, and Y. Nam, “Blockchain-Based Secure Healthcare Application for Diabetic-Cardio Disease Prediction in Fog Computing,” IEEE Access, vol. 9, pp. 45706–45720, 2021, doi: 10.1109/ACCESS.2021.3065440.
[75] C. and M. Methods in Medicine, “Retracted: Blockchain and IPFS Integrated Framework in Bilevel Fog-Cloud Network for Security and Privacy of IoMT Devices,” Comput Math Methods Med, vol. 2023, pp. 1–1, Aug. 2023, doi: 10.1155/2023/9851401.
[76] A. lakhan, M. A. Mohammed, D. A. Ibrahim, and K. H. Abdulkareem, “Bio-inspired robotics enabled schemes in blockchain-fog-cloud assisted IoMT environment,” Journal of King Saud University - Computer and Information Sciences, vol. 35, no. 1, pp. 1–12, Jan. 2023, doi: 10.1016/j.jksuci.2021.11.009.
[77] M. Wazid, A. K. Das, S. Shetty, J. J. P. C. Rodrigues, and M. Guizani, “AISCM-FH: AI-Enabled Secure Communication Mechanism in Fog Computing-Based Healthcare,” IEEE Transactions on Information Forensics and Security, vol. 18, pp. 319–334, 2023, doi: 10.1109/TIFS.2022.3220959.
[78] N. Alsaeed, F. Nadeem, and F. Albalwy, “A scalable and lightweight group authentication framework for Internet of Medical Things using integrated blockchain and fog computing,” Future Generation Computer Systems, vol. 151, pp. 162–181, Feb. 2024, doi: 10.1016/j.future.2023.09.032.
[79] A. Karakaya and S. Akleylek, “A novel IoT-based health and tactical analysis model with fog computing,” PeerJ Comput Sci, vol. 7, pp. 1–34, 2021, doi: 10.7717/peerj-cs.342.
[80] J. J. Naidu N S S and G. E. N, “A Novel Blockchain-Based Lightweight Encryption Technique in Fog Based IoT for Personal Healthcare Data Application,” International Journal of Intelligent Systems and Applications in Engineering IJISAE, vol. 2023, no. 3s, pp. 119–128, 2023, [Online]. Available: www.ijisae.org
[81] O. Cheikhrouhou, K. Mershad, F. Jamil, R. Mahmud, A. Koubaa, and S. R. Moosavi, “A lightweight blockchain and fog-enabled secure remote patient monitoring system,” Internet of Things (Netherlands), vol. 22, Jul. 2023, doi: 10.1016/j.iot.2023.100691.
[82] N. Islam, Y. Faheem, I. U. Din, M. Talha, M. Guizani, and M. Khalil, “A blockchain-based fog computing framework for activity recognition as an application to e-Healthcare services,” Future Generation Computer Systems, vol. 100, pp. 569–578, Nov. 2019, doi: 10.1016/j.future.2019.05.059.
[83] V. Mani et al., “A new blockchain and fog computing model for blood pressure medical sensor data storage,” Computers and Electrical Engineering, vol. 102, Sep. 2022, doi: 10.1016/j.compeleceng.2022.108202.
[84] A. Ginavanee and S. Prasanna, “Integration of Ethereum Blockchain with Cloud Computing for Secure Healthcare Data Management System,” Journal of Electrical Systems, vol. 20, no. 4, pp. 111–124, 2024.
[85] O. Akinola, A. Akinola, B. Oyekan, O. Oyerinde, H. Folashade Adebiyi, and B. Sulaimon, “Blockchain-Enabled Security Solutions for Medical Device Integrity and Provenance in Cloud Environments,” International Journal of Innovative Science and Research Technology (IJISRT), pp. 123–135, Apr. 2024, doi: 10.38124/ijisrt/IJISRT24APR225.
[86] Y. Yang, R. hua Shi, K. Li, Z. Wu, and S. Wang, “Multiple access control scheme for EHRs combining edge computing with smart contracts,” Future Generation Computer Systems, vol. 129, pp. 453–463, Apr. 2022, doi: 10.1016/j.future.2021.11.002.
[87] M. S. Rahman, F. F. Tura, and S. Mahamud, “Unlocking the Power of Blockchain for Safe and Secure Electronic Personal Information and Health Record Management with the Use of Cloud Storage,” Institute of Electrical and Electronics Engineers (IEEE), Aug. 2023, pp. 495–500. doi: 10.1109/sist58284.2023.10223495.
[88] L. Tan, K. Yu, N. Shi, C. Yang, W. Wei, and H. Lu, “Towards Secure and Privacy-Preserving Data Sharing for COVID-19 Medical Records: A Blockchain-Empowered Approach,” IEEE Trans Netw Sci Eng, vol. 9, no. 1, pp. 271–281, 2022, doi: 10.1109/TNSE.2021.3101842.
[89] X. Liang, S. Shetty, D. Tosh, D. Bowden, L. Njilla, and C. Kamhoua, “Towards blockchain empowered trusted and accountable data sharing and collaboration in mobile healthcare applications,” EAI Endorsed Trans Pervasive Health Technol, vol. 4, no. 15, 2018, doi: 10.4108/eai.24-7-2018.159338.
[90] F. Al-Quayed, M. Humayun, and S. Tahir, “Towards a Secure Technology-Driven Architecture for Smart Health Insurance Systems: An Empirical Study,” Healthcare (Switzerland), vol. 11, no. 16, Aug. 2023, doi: 10.3390/healthcare11162257.
[91] S. Cao, X. Zhang, and R. Xu, “Toward secure storage in cloud-based ehealth systems: A blockchain-assisted approach,” IEEE Netw, vol. 34, no. 2, pp. 64–70, Mar. 2020, doi: 10.1109/MNET.001.1900173.
[92] H. B. Mahajan and A. A. Junnarkar, “Smart healthcare system using integrated and lightweight ECC with private blockchain for multimedia medical data processing,” Multimed Tools Appl, Nov. 2023, doi: 10.1007/s11042-023-15204-4.
[93] H. Wu, A. D. Dwivedi, and G. Srivastava, “Security and Privacy of Patient Information in Medical Systems Based on Blockchain Technology,” ACM Transactions on Multimedia Computing, Communications and Applications, vol. 17, no. 2s, Jun. 2021, doi: 10.1145/3408321.
[94] G. Nagasubramanian, R. K. Sakthivel, R. Patan, A. H. Gandomi, M. Sankayya, and B. Balusamy, “Securing e-health records using keyless signature infrastructure blockchain technology in the cloud,” Neural Comput Appl, vol. 32, no. 3, pp. 639–647, Feb. 2020, doi: 10.1007/s00521-018-3915-1.
[95] H. Kaur, R. Jameel, M. A. Alam, B. Alankar, and V. Chang, “Securing and managing healthcare data generated by intelligent blockchain systems on cloud networks through DNA cryptography,” Journal of Enterprise Information Management, vol. 36, no. 4, pp. 861–878, Jun. 2023, doi: 10.1108/JEIM-02-2021-0084.
[96] J. Cui, L. Duan, W. Ni, and C. Li, “Secure Cross-domain Medical Data Sharing based on Distributed Cloud and Blockchain Services,” in 2023 IEEE International Conference on Web Services (ICWS), Institute of Electrical and Electronics Engineers (IEEE), Sep. 2023, pp. 698–700. doi: 10.1109/icws60048.2023.00089.
[97] H. Wang and Y. Song, “Secure Cloud-Based EHR System Using Attribute-Based Cryptosystem and Blockchain,” J Med Syst, vol. 42, no. 8, Aug. 2018, doi: 10.1007/s10916-018-0994-6.
[98] L. Cui, Z. Xiao, F. Chen, H. Dai, and J. Li, “Protecting Vaccine Safety: An Improved, Blockchain-Based, Storage-Efficient Scheme,” IEEE Trans Cybern, vol. 53, no. 6, pp. 3588–3598, Jun. 2023, doi: 10.1109/TCYB.2022.3163743.
[99] A. Al Omar, M. Z. A. Bhuiyan, A. Basu, S. Kiyomoto, and M. S. Rahman, “Privacy-friendly platform for healthcare data in cloud based on blockchain environment,” Future Generation Computer Systems, vol. 95, pp. 511–521, Jun. 2019, doi: 10.1016/j.future.2018.12.044.
[100] S. Juyal, S. Sharma, A. Harbola, and A. S. Shukla, “Privacy and Security of IoT based Skin Monitoring System using Blockchain Approach,” in 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2020, pp. 1–5.
[101] H. Tan, P. Kim, and I. Chung, “Practical homomorphic authentication in cloud-assisted vanets with blockchain-based healthcare monitoring for pandemic control,” Electronics (Switzerland), vol. 9, no. 10, pp. 1–21, Oct. 2020, doi: 10.3390/electronics9101683.
[102] J. Zhao, W. Wang, D. Wang, X. Wang, and C. Mu, “PMHE: a wearable medical sensor assisted framework for health care based on blockchain and privacy computing,” Journal of Cloud Computing, vol. 11, no. 1, Dec. 2022, doi: 10.1186/s13677-022-00373-8.
[103] A. K. Bapatla, S. P. Mohanty, E. Kougianos, and D. Puthal, “PharmaChain 2.0: A Blockchain Framework for Secure Remote Monitoring of Drug Environmental Parameters in Pharmaceutical Cold Supply Chain,” in Proceedings - 2022 IEEE International Symposium on Smart Electronic Systems, iSES 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 185–190. doi: 10.1109/iSES54909.2022.00046.
[104] J. Priya and C. Palanisamy, “Novel Block Chain Technique for Data Privacy and Access Anonymity in Smart Healthcare,” Intelligent Automation and Soft Computing, vol. 35, no. 1, pp. 243–259, 2023, doi: 10.32604/iasc.2023.025719.
[105] S. Badr, I. Gomaa, and E. Abd-Elrahman, “Multi-tier blockchain framework for IoT-EHRs systems,” in Procedia Computer Science, Elsevier B.V., 2018, pp. 159–166. doi: 10.1016/j.procs.2018.10.162.
[106] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and M. Guizani, “MeDShare: Trust-Less Medical Data Sharing among Cloud Service Providers via Blockchain,” IEEE Access, vol. 5, pp. 14757–14767, Jul. 2017, doi: 10.1109/ACCESS.2017.2730843.
[107] M. George and A. Mary Chacko, “MediTrans—Patient-centric interoperability through blockchain,” International Journal of Network Management, vol. 32, no. 3, May 2022, doi: 10.1002/nem.2187.
[108] H. Pan, Y. Zhang, X. Si, Z. Yao, and L. Zhao, “MDS2-C3PF: A Medical Data Sharing Scheme with Cloud-Chain Cooperation and Policy Fusion in IoT,” Symmetry (Basel), vol. 14, no. 12, Dec. 2022, doi: 10.3390/sym14122479.
[109] S. Niu, M. Song, L. Fang, F. Yu, S. Han, and C. Wang, “Keyword search over encrypted cloud data based on blockchain in smart medical applications,” Comput Commun, vol. 192, pp. 33–47, Aug. 2022, doi: 10.1016/j.comcom.2022.05.018.
[110] A. A. Amponsah, A. F. Adekoya, and B. A. Weyori, “Improving the Financial Security of National Health Insurance using Cloud-Based Blockchain Technology Application,” International Journal of Information Management Data Insights, vol. 2, no. 1, Apr. 2022, doi: 10.1016/j.jjimei.2022.100081.
[111] A. Thamrin and H. Xu, “Hierarchical Cloud-Based Consortium Blockchains for Healthcare Data Storage,” in Proceedings - 2021 21st International Conference on Software Quality, Reliability and Security Companion, QRS-C 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 644–651. doi: 10.1109/QRS-C55045.2021.00098.
[112] H. Kurdi, S. Alsalamah, A. Alatawi, S. Alfaraj, L. Altoaimy, and S. H. Ahmed, “Healthybroker: A trustworthy blockchain-based multi-cloud broker for patient-centered ehealth services,” Electronics (Switzerland), vol. 8, no. 6, Jun. 2019, doi: 10.3390/electronics8060602.
[113] S. Li et al., “HealthFort: A Cloud-Based Ehealth System With Conditional Forward Transparency and Secure Provenance Via Blockchain,” IEEE Trans Mob Comput, Nov. 2022, doi: 10.1109/TMC.2022.3199048.
[114] A. Mubarakali, “Healthcare Services Monitoring in Cloud Using Secure and Robust Healthcare-Based BLOCKCHAIN(SRHB)Approach,” Mobile Networks and Applications, vol. 25, no. 4, pp. 1330–1337, Aug. 2020, doi: 10.1007/s11036-020-01551-1.
[115] M. Sumathi, S. P. Raja, N. Vijayaraj, and M. Rajkamal, “Healthcare Data Collection Using Internet of Things and Blockchain Based Decentralized Data Storage,” Advances in Distributed Computing and Artificial Intelligence Journal, vol. 12, no. 1, 2023, doi: 10.14201/adcaij.28612.
[116] R. Guo, H. Shi, D. Zheng, C. Jing, C. Zhuang, and Z. Wang, “Flexible and Efficient Blockchain-Based ABE Scheme with Multi-Authority for Medical on Demand in Telemedicine System,” IEEE Access, vol. 7, pp. 88012–88025, 2019, doi: 10.1109/ACCESS.2019.2925625.
[117] C. Eben and S. Nagarajan, “Flexible Access Control Mechanism for Cloud stored EHR using Consortium Blockchain,” International Journal of System Assurance Engineering and Management , pp. 1–16, 2022.
[118] N. R. Sivakumar, S. A. Ghorashi, N. Ahmed, H. E. A. Elsrej, and S. Basheer, “Fischer machine learning for mobile cloud computing in eHealth systems using blockchain mechanism,” Microprocess Microsyst, vol. 103, Nov. 2023, doi: 10.1016/j.micpro.2023.104969.
[119] E. Ashraf, N. F. F. Areed, H. Salem, E. H. Abdelhay, and A. Farouk, “FIDChain: Federated Intrusion Detection System for Blockchain-Enabled IoT Healthcare Applications,” Healthcare (Switzerland), vol. 10, no. 6, Jun. 2022, doi: 10.3390/healthcare10061110.
[120] Z. Pang, Y. Yao, Q. Li, X. Zhang, and J. Zhang, “Electronic Health Records Sharing Model based on Blockchain with Checkable State PBFT Consensus Algorithm,” IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3186682.
[121] R. Mishra, D. Ramesh, D. R. Edla, and L. Qi, “DS-Chain: A secure and auditable multi-cloud assisted EHR storage model on efficient deletable blockchain,” J Ind Inf Integr, vol. 26, Mar. 2022, doi: 10.1016/j.jii.2021.100315.
[122] M. Kim, S. Yu, J. Lee, Y. Park, and Y. Park, “Design of secure protocol for cloud-assisted electronic health record system using blockchain,” Sensors (Switzerland), vol. 20, no. 10, May 2020, doi: 10.3390/s20102913.
[123] S. Son, J. Lee, M. Kim, S. Yu, A. K. Das, and Y. Park, “Design of secure authentication protocol for cloud-assisted telecare medical information system using blockchain,” IEEE Access, vol. 8, pp. 192177–192191, 2020, doi: 10.1109/ACCESS.2020.3032680.
[124] S. Cao, G. Zhang, P. Liu, X. Zhang, and F. Neri, “Cloud-assisted secure eHealth systems for tamper-proofing EHR via blockchain,” Inf Sci (N Y), vol. 485, pp. 427–440, Jun. 2019, doi: 10.1016/j.ins.2019.02.038.
[125] X. Zhu, J. Shi, and C. Lu, “Cloud health resource sharing based on consensus-oriented blockchain technology: Case study on a breast tumor diagnosis service,” J Med Internet Res, vol. 21, no. 7, Jul. 2019, doi: 10.2196/13767.
[126] T. Benil and J. Jasper, “Cloud based security on outsourcing using blockchain in E-health systems,” Computer Networks, vol. 178, Sep. 2020, doi: 10.1016/j.comnet.2020.107344.
[127] L. Yang, X. Y. Liu, and J. S. Kim, “Cloud-based Livestock Monitoring System Using RFID and Blockchain Technology,” in Proceedings - 2020 7th IEEE International Conference on Cyber Security and Cloud Computing and 2020 6th IEEE International Conference on Edge Computing and Scalable Cloud, CSCloud-EdgeCom 2020, Institute of Electrical and Electronics Engineers Inc., Aug. 2020, pp. 240–245. doi: 10.1109/CSCloud-EdgeCom49738.2020.00049.
[128] Y. Wang, A. Zhang, P. Zhang, and H. Wang, “Cloud-Assisted EHR Sharing with Security and Privacy Preservation via Consortium Blockchain,” IEEE Access, vol. 7, pp. 136704–136719, 2019, doi: 10.1109/ACCESS.2019.2943153.
[129] H. Gao, H. Huang, L. Xue, F. Xiao, and Q. Li, “Blockchain-Enabled Fine-Grained Searchable Encryption with Cloud-Edge Computing for Electronic Health Records Sharing,” IEEE Internet Things J, vol. 10, no. 20, pp. 18414–18425, Oct. 2023, doi: 10.1109/JIOT.2023.3279893.
[130] A. EL Azzaoui, P. K. Sharma, and J. H. Park, “Blockchain-based delegated Quantum Cloud architecture for medical big data security,” Journal of Network and Computer Applications, vol. 198, Feb. 2022, doi: 10.1016/j.jnca.2021.103304.
[131] D. Ramesh, R. Mishra, P. K. Atrey, D. R. Edla, S. Misra, and L. Qi, “Blockchain based efficient tamper-proof EHR storage for decentralized cloud-assisted storage,” Alexandria Engineering Journal, vol. 68, pp. 205–226, Apr. 2023, doi: 10.1016/j.aej.2023.01.012.
[132] C. Qin, L. Wu, W. Meng, Z. Xu, S. Li, and H. Wang, “A privacy-preserving blockchain-based tracing model for virus-infected people in cloud,” Expert Syst Appl, vol. 211, Jan. 2023, doi: 10.1016/j.eswa.2022.118545.
[133] X. Yang, T. Li, W. Xi, A. Chen, and C. Wang, “A blockchain-assisted verifiable outsourced attribute-based signcryption scheme for EHRS sharing in the cloud,” IEEE Access, vol. 8, pp. 170713–170731, 2020, doi: 10.1109/ACCESS.2020.3025060.
[134] J. A. Santos, P. R. M. Inácio, and B. M. C. Silva, “Towards the Use of Blockchain in Mobile Health Services and Applications,” J Med Syst, vol. 45, no. 2, Feb. 2021, doi: 10.1007/s10916-020-01680-w.
[135] C. Awasthi, M. Nawal, and P. K. Mishra, “Security Concerns of Fog Computing in Field of Healthcare using Blockchain: A Review,” in Proceedings - International Conference on Communication, Information and Computing Technology, ICCICT 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi: 10.1109/ICCICT50803.2021.9510166.
[136] Ž. Kodrič, S. Vrhovec, and L. Jelovčan, “Securing edge-enabled smart healthcare systems with blockchain: A systematic literature review,” Journal of Internet Services and Information Security, vol. 11, no. 4, pp. 19–32, Nov. 2021, doi: 10.22667/JISIS.2021.11.30.019.
[137] H. Makina and A. Ben Letaifa, “Bringing intelligence to Edge/Fog in Internet of Things-based healthcare applications: Machine learning/deep learning-based use cases,” International Journal of Communication Systems, vol. 36, no. 9, Jun. 2023, doi: 10.1002/dac.5484.
[138] A. Mudheher Badr, L. Chaari Fourati, and S. Ayed, “Investigation on the Integrated Cloud and BlockChain (ICBC)Technologies to Secure Healthcare Data Management Systems,” in Proceedings - International Conference on Developments in eSystems Engineering, DeSE, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 19–26. doi: 10.1109/DeSE58274.2023.10100065.
[139] R. Kothari, “Integration of Blockchain and Edge Computing in Healthcare: Accountability and Collaboration,” 2023, doi: 10.22545/2020/00230.
[140] Y. Zhang and D. Wang, “Integrating blockchain technology and cloud services in healthcare: a security and privacy perspective,” Proceedings of the Indian National Science Academy, 2023, doi: 10.1007/s43538-023-00202-9.
[141] F. Firouzi et al., “Fusion of IoT, AI, Edge-Fog-Cloud, and Blockchain: Challenges, Solutions, and a Case Study in Healthcare and Medicine,” IEEE Internet Things J, vol. 10, no. 5, pp. 3686–3705, Mar. 2023, doi: 10.1109/JIOT.2022.3191881.
[142] M. K. I. Rahmani et al., “Blockchain-Based Trust Management Framework for Cloud Computing-Based Internet of Medical Things (IoMT): A Systematic Review,” 2022, Hindawi Limited. doi: 10.1155/2022/9766844.
[143] S. Alam et al., “Blockchain-Based Solutions Supporting Reliable Healthcare for Fog Computing and Internet of Medical Things (IoMT) Integration,” Nov. 01, 2022, MDPI. doi: 10.3390/su142215312.
[144] M. M. Kamruzzaman, B. Yan, M. N. I. Sarker, O. Alruwaili, M. Wu, and I. Alrashdi, “Blockchain and Fog Computing in IoT-Driven Healthcare Services for Smart Cities,” J Healthc Eng, vol. 2022, 2022, doi: 10.1155/2022/9957888.
[145] C. Awasthi, S. Prakash Awasthi, and P. K. Mishra, “A review on FOG supported architecture in healthcare using blockchain,” J. Integr. Sci. Technol, vol. 12, no. 1, pp. 721–727, 2024, [Online]. Available: http://pubs.thesciencein.org/jist
[146] H. Kaur, M. A. Alam, R. Jameel, A. Kumar Mourya, and V. Chang, “A Proposed Solution and Future Direction for Blockchain based Heterogeneous Medicare data in Cloud Environment,” J Med Syst, vol. 2018, no. 4, pp. 1–11, 2018.