Real-Time SDN–IoT Integrated Framework for Intelligent Emergency Vehicle Prioritization in Smart Cities
Main Article Content
Abstract
Urban traffic control has become increasingly complex with rising vehicle density, particularly in smart cities. Timely arrival of emergency vehicles is critical, yet existing systems relying on manual transmitters and sirens offer limited range and effectiveness. This paper proposes a real-time intelligent traffic management framework integrating Software-Defined Networking (SDN), Internet of Things (IoT) technologies, and the Edge of Things (EoT)—a paradigm combining edge computing with IoT to enable low-latency processing at the network edge. The framework connects the SUMO traffic simulator and Veins vehicular network framework via TraCI, with the RYU SDN controller dynamically adjusting traffic signals and vehicle routes for emergency vehicle prioritization. Simulation results show that the system reduces emergency vehicle travel delay by 38%, decreases intersection waiting time by 42%, and improves overall traffic throughput by 25% compared to conventional control. These results demonstrate the framework’s scalability, responsiveness, and potential for deployment in real-world smart city infrastructures.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
[1] T. Nam and T. A. Pardo, "Conceptualizing smart city with dimensions of technology, people and institutions," in Proc. 12th Annu. Int. Conf. Digit. Gov. Res. (dg.o), College Park, MD, USA, Jun. 2011, pp. 282–291, doi: 10.1145/2037556.2037602.
[2] L. A. E. Al-Saeedi, D. F. G. Albo Mohammed, F. J. Shakir, F. K. Hasan, G. G. Shayea, Y. L. Khaleel, and M. A. Habeeb, "Artificial intelligence and cybersecurity in face sale contracts: Legal issues and frameworks," Mesopotamian J. Cybersecurity, vol. 4, no. 2, pp. 129–142, 2024, doi: 10.58496/MJCS/2024/0012.
[3] L. Hernandez, C. Baladron, J. M. Aguiar, B. Carro, A. Sanchez Esguevillas, J. Lloret, D. Chinarro, J. J. Gómez Sanz, and D. Cook, "A multi agent system architecture for smart grid management and forecasting of energy demand in virtual power plants," IEEE Commun. Mag., vol. 51, no. 1, pp. 106–113, Jan. 2013.
[4] J. Steenbruggen, P. Nijkamp, and M. van der Vlist, "Urban traffic incident management in a digital society: An actor network approach in information technology use in urban Europe," Technol. Forecast. Soc. Change, vol. 89, pp. 245–261, Nov. 2014.
[5] F. K. H. Mihna, M. A. Habeeb, Y. L. Khaleel, Y. H. Ali, and L. A. E. Al-Saeedi, "Using information technology for comprehensive analysis and prediction in forensic evidence," Mesopotamian J. Cybersecurity, vol. 2024, pp. 4–16, 2024, doi: 10.58496/MJCS/2024/002.
[6] A. Cuesta, O. Abreu, and D. Alvear, "Future challenges in evacuation modelling," in Evacuation Modelling Trends. Cham, Switzerland: Springer, 2014, ch. 5, doi: 10.1007/978-3-319-20708-7_5.
[7] G. G. Shayea, D. A. Mohammed, A. H. Abbas, and N. F. Abdulsattar, "Privacy-aware secure routing through elliptical curve cryptography with optimal RSU distribution in VANETs," Designs, vol. 6, no. 6, p. 121, 2022, doi: 10.3390/designs6060121.
[8] H. El Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty, and C. Lin, "Edge of things: The big picture on the integration of edge, IoT and the cloud in a distributed computing environment," IEEE Access, vol. 6, pp. 1706–1717, 2018, doi: 10.1109/ACCESS.2017.2780087.
[9] S. F. Ismail, "IOE solution for a diabetic patient monitoring," in Proc. 8th Int. Conf. Inf. Technol. (ICIT), Amman, Jordan, 2017, pp. 244–248, doi: 10.1109/ICITECH.2017.8080007.
[10] K. A. C. Basconcillo, D. J. B. Benitez, E. A. S. Cantuba, R. E. L. Enríquez, C. R. I. Falcon, K. K. D. Serrano, E. C. Guevara, and R. R. P. Vicerra, "Development of a vehicle and pedestrian simulation environment with M.I.S.O fuzzy logic controlled intelligent traffic light system," in Proc. 5th Int. Conf. Inf. Commun. Technol. (ICT), Malacca City, Malaysia, May 2017, pp. 1–6.
[11] G. G. Shayea, M. H. M. Zabil, A. S. Albahri, S. S. Joudar, R. A. Hamid, O. S. Albahri, A. H. Alamoodi, I. A. Zahid, and I. M. Sharaf, "Fuzzy evaluation and benchmarking framework for robust machine learning model in real time autism triage applications," Int. J. Comput. Intell. Syst., vol. 17, p. 151, 2024, doi: 10.1007/s44196-024-00543-3.
[12] S. Sharma, A. Pithora, G. Gupta, M. Goel, and M. Sinha, "Traffic light priority control for emergency vehicle using RFID," Int. J. Innov. Eng. Technol., vol. 2, no. 2, pp. 363–366, Apr. 2013.
[13] K. Z. Ghafoor, K. A. Bakar, J. Lloret, R. H. Khokhar, and K. C. Lee, "Intelligent beaconless geographical forwarding for urban vehicular environments," Wirel. Netw., vol. 19, no. 3, pp. 345–362, Apr. 2013, doi: 10.1007/s11276-012-0493-7.
[14] A. S. Albahri, R. A. Hamid, L. Alzubaidi, R. Z. Homod, K. A. Zidan, H. Mubark, G. G. Shayea, O. S. Albahri, and A. H. Alamoodi, "Prioritizing complex health levels beyond autism triage using fuzzy multi-criteria decision-making," Complex Intell. Syst., vol. 10, pp. 6159–6188, 2024, doi: 10.1007/s40747-024-01432-0.
[15] M. Collotta, L. Lo Bello, and G. Pau, "A novel approach for dynamic traffic lights management based on wireless sensor networks and multiple fuzzy logic controllers," Expert Syst. Appl., vol. 42, no. 13, pp. 5403–5415, Aug. 2015, doi: 10.1016/j.eswa.2015.02.029.
[16] S. Sendra, A. Rego, J. Lloret, J. M. Jimenez, and O. Romero, "Including artificial intelligence in a routing protocol using software defined networks," in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Paris, France, May 21–25, 2017, pp. 670–674, doi: 10.1109/ICCW.2017.7962723.
[17] M. Taha, L. García, J. M. Jimenez, and J. Lloret, "SDN-based throughput allocation in wireless networks for heterogeneous adaptive video streaming applications," in Proc. 13th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Valencia, Spain, Jun. 26–30, 2017, pp. 963–968, doi: 10.1109/IWCMC.2017.7986449.
[18] S. Tomovic, M. Pejanovic-Djurisic, and I. Radusinovic, "SDN based mobile networks: Concepts and benefits," Wirel. Pers. Commun., vol. 78, no. 3, pp. 1629–1644, Oct. 2014, doi: 10.1007/s11277-014-1945-2.
[19] E. Ahmed, I. Yaqoob, A. Gani, M. Imran, and M. Guizani, "Internet-of-things-based smart environments: State of the art, taxonomy, and open research challenges," IEEE Wirel. Commun., vol. 23, no. 5, pp. 10–16, Nov. 2016, doi: 10.1109/MWC.2016.7721736.
[20] C. Sommer, D. Eckhoff, A. Bazzi, D. Brandes, F. Hagenauer, S. Joerer, and M. Segata, "Veins – The open source vehicular network simulation framework," in Recent Advances in Network Simulation, A. Virdis and M. Kirsche, Eds. Cham, Switzerland: Springer, 2019, pp. 215–252, doi: 10.1007/978-3-030-12842-5_6.
[21] T. Olah, "Manual of Sumo/Matlab/Veins/INET/OMNeT++ programming and interfacing," Tech. Rep., Budapest Univ. Technol. Econ., 2021.
[22] A. Wegener, M. Piorkowski, M. Raya, H. Hellbrück, S. Fischer, and J.-P. Hubaux, "TraCI: An interface for coupling road traffic and network simulators," in Proc. 11th Commun. Netw. Simul. Symp. (CNS), 2008, pp. 155–163, doi: 10.1145/1400713.1400740.
[23] I. M. Tariqul, I. Nazrul, and M. A. Refat, "Node-to-node performance evaluation through RYU SDN controller," Wirel. Pers. Commun., vol. 112, no. 1, pp. 237–252, 2020, doi: 10.1007/s11277-020-07098-3.
[24] K. Nellore and G. P. Hancke, "A survey on urban traffic management system using wireless sensor networks," Sensors, vol. 16, no. 2, p. 157, Jan. 2016, doi: 10.3390/s16020157.
[25] Z. Cao, S. Jiang, J. Zhang, and H. Guo, "A unified framework for vehicle rerouting and traffic light control to reduce traffic congestion," IEEE Trans. Intell. Transp. Syst., vol. 18, no. 7, pp. 1958–1973, Jul. 2017, doi: 10.1109/TITS.2016.2633222.
[26] H. M. Kammoun, I. Kallel, J. Casillas, A. Abraham, and A. M. Alimi, "Adapt-Traf: An adaptive multi-agent road traffic management system based on hybrid ant-hierarchical fuzzy model," Transp. Res. Part C Emerg. Technol., vol. 42, pp. 147–167, May 2014, doi: 10.1016/j.trc.2014.02.001.
[27] R. Bauza and J. Gozalvez, "Traffic congestion detection in large-scale scenarios using vehicle-to-vehicle communications," J. Netw. Comput. Appl., vol. 36, no. 5, pp. 1295–1307, Sep. 2013, doi: 10.1016/j.jnca.2012.12.017.
[28] X. Li, Y. Smith, and Z. Wang, "SDN-based traffic signal control for smart cities," IEEE Trans. Intell. Transp. Syst., vol. 23, no. 5, pp. 2234–2245, May 2022, doi: 10.1109/TITS.2022.3141590.
[29] S. Ahmed, D. Patel, and K. Rao, "Edge computing for real-time emergency response in intelligent transportation systems," IEEE Access, vol. 11, pp. 14520–14532, 2023, doi: 10.1109/ACCESS.2023.4012345.
[30] R. Kumar, A. Singh, and P. Gupta, "IoT enabled intelligent traffic management system with emergency vehicle prioritization," Sensors, vol. 21, no. 12, p. 4100, Jun. 2021, doi: 10.3390/s21124100.
[31] L. Zhang, H. Chen, and J. Yu, "Adaptive traffic control using SDN and VANET integration," Comput. Netw., vol. 167, p. 107028, Nov. 2020, doi: 10.1016/j.comnet.2020.107028.
[32] J. Wang, D. Lee, and H. Kim, "Hybrid edge cloud architecture for low latency traffic management," Future Gener. Comput. Syst., vol. 143, pp. 262–274, Feb. 2024, doi: 10.1016/j.future.2023.11.012.