Global Analysis and Prediction of CO2 and Greenhouse Gas Emissions across Continents

Main Article Content

Fadya A. Habeeb
Mustafa Abdulfattah Habeeb
Yahya Layth Khaleel
Fatimah N. Ameen

Abstract

Understanding the concentrations of Carbon Dioxide (CO2) and greenhouse gases is very important in solving the problem of climate change. These emissions are the major cause of global warming, which, in turn, has many effects on the environment, economy and society. For this reason, the prediction models for these emissions must be precise to aid policy makers in planning for the effects of the climate in the future. To evaluate the emission data of different continents, this paper seeks to identify related patterns and findings that can help reduce emissions worldwide. The dataset used contains emission data and geographic information from several countries and allows the comparison of several ML models. The models that have been reviewed in this study are linear regression (LR), decision tree regression (DT), random forest regression (RF), support vector regression (SVR), k-nearest neighbor regression (KNN), the XGB regressor, the gradient boosting regressor, Ridge and Lasso. Among the models, the gradient boosting regressor was found to have the best prediction capability, with an R-squared value of 0. The highest value of the mean absolute error (MAE) was 929, and the lowest mean squared error (MSE) was 2535.30. This model outperforms the other models because of its excellent ability to identify the complex interactions between the input variables and emissions. The conclusions stress the possibility of using ensembles, such as gradient boosting, for emission forecasting and present a contribution to studies of this issue for researchers and policymakers. This is a nominal attempt in the ongoing global endeavour to gain insight and curb the determinable levels of CO2 and greenhouse gas emissions for effective decision-maki


 

Article Details

Section

Articles

How to Cite

Global Analysis and Prediction of CO2 and Greenhouse Gas Emissions across Continents (F. A. Habeeb, M. A. Habeeb, Y. L. Khaleel, & F. N. Ameen , Trans.). (2024). Applied Data Science and Analysis, 2024, 173-188. https://doi.org/10.58496/ADSA/2024/014

References

M. Kabir et al., “Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review,” J. King Saud Univ. - Sci., vol. 35, no. 5, p. 102693, Jul. 2023, doi: 10.1016/j.jksus.2023.102693.

“Energy and the environment explained,” 2024.

A. S. Albahri et al., “A systematic review of trustworthy artificial intelligence applications in natural disasters,” Comput. Electr. Eng., vol. 118, p. 109409, 2024, doi: 10.1016/j.compeleceng.2024.109409.

A. S. Albahri, Y. L. Khaleel, and M. A. Habeeb, “The Considerations of Trustworthy AI Components in Generative AI; A Letter to Editor,” Appl. Data Sci. Anal., vol. 2023, pp. 108–109, 2023, doi: 10.58496/adsa/2023/009.

L. A. E. Al-saeedi et al., “Artificial Intelligence and Cybersecurity in Face Sale Contracts: Legal Issues and Frameworks ,” Mesopotamian J. CyberSecurity, vol. 4, no. 2 SE-Articles, pp. 129–142, Aug. 2024, doi: 10.58496/MJCS/2024/0012.

K. O. Yoro and M. O. Daramola, “Chapter 1 - CO2 emission sources, greenhouse gases, and the global warming effect,” in Advances in Carbon Capture, M. R. Rahimpour, M. Farsi, and M. A. Makarem, Eds., Woodhead Publishing, 2020, pp. 3–28. doi: https://doi.org/10.1016/B978-0-12-819657-1.00001-3.

R. Prasad et al., “Role of Microalgae in Global CO2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective,” Sustainability, vol. 13, no. 23, 2021, doi: 10.3390/su132313061.

U. A. Bhatti et al., “Global production patterns: Understanding the relationship between greenhouse gas emissions, agriculture greening and climate variability,” Environ. Res., vol. 245, p. 118049, 2024, doi: https://doi.org/10.1016/j.envres.2023.118049.

M. A. Salam and T. Noguchi, “Impact of Human Activities on Carbon Dioxide (CO2) Emissions: A Statistical Analysis,” Environmentalist, vol. 25, no. 1, pp. 19–30, 2005, doi: 10.1007/s10669-005-3093-4.

W. F. Lamb et al., “A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018,” Environ. Res. Lett., vol. 16, no. 7, p. 73005, 2021.

K. R. Shivanna, “Climate change and its impact on biodiversity and human welfare,” Proc. Indian Natl. Sci. Acad., vol. 88, no. 2, pp. 160–171, 2022, doi: 10.1007/s43538-022-00073-6.

M. K. Jha and M. Dev, “Impacts of Climate Change,” in Smart Internet of Things for Environment and Healthcare, M. Azrour, J. Mabrouki, A. Alabdulatif, A. Guezzaz, and F. Amounas, Eds., Cham: Springer Nature Switzerland, 2024, pp. 139–159. doi: 10.1007/978-3-031-70102-3_10.

A. Kumar, S. Nagar, and S. Anand, “1 - Climate change and existential threats,” in Global Climate Change, S. Singh, P. Singh, S. Rangabhashiyam, and K. K. Srivastava, Eds., Elsevier, 2021, pp. 1–31. doi: https://doi.org/10.1016/B978-0-12-822928-6.00005-8.

L. Chen et al., “Strategies to achieve a carbon neutral society: a review,” Environ. Chem. Lett., vol. 20, no. 4, pp. 2277–2310, 2022, doi: 10.1007/s10311-022-01435-8.

M.-T. Huang and P.-M. Zhai, “Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society,” Adv. Clim. Chang. Res., vol. 12, no. 2, pp. 281–286, 2021, doi: https://doi.org/10.1016/j.accre.2021.03.004.

H. Li, X. Jin, R. Zhao, B. Han, Y. Zhou, and P. Tittonell, “Assessing uncertainties and discrepancies in agricultural greenhouse gas emissions estimation in China: A comprehensive review,” Environ. Impact Assess. Rev., vol. 106, p. 107498, 2024, doi: https://doi.org/10.1016/j.eiar.2024.107498.

J. Udoh, J. Lu, and Q. Xu, “Application of Machine Learning to Predict CO2 Emissions in Light-Duty Vehicles,” Sensors, vol. 24, no. 24, 2024, doi: 10.3390/s24248219.

A. H. Alamoodi, M. S. Al-Samarraay, O. S. Albahri, M. Deveci, A. S. Albahri, and S. Yussof, “Evaluation of energy economic optimization models using multi-criteria decision-making approach,” Expert Syst. Appl., vol. 255, p. 124842, 2024, doi: 10.1016/j.eswa.2024.124842.

M. Talal, A. H. Alamoodi, O. S. Albahri, A. S. Albahri, and D. Pamucar, “Evaluation of remote sensing techniques-based water quality monitoring for sustainable hydrological applications: an integrated FWZIC-VIKOR modelling approach,” Environ. Dev. Sustain., vol. 26, no. 8, pp. 19685–19729, 2024, doi: 10.1007/s10668-023-03432-5.

D. David et al., “Correction: Sign language mobile apps: a systematic review of current app evaluation progress and solution framework,” Evol. Syst., vol. 15, no. 5, p. 1989, 2024, doi: 10.1007/s12530-024-09600-w.

M. A. Habeeb, Y. L. Khaleel, R. D. Ismail, Z. T. Al-Qaysi, and A. F. N., “Deep Learning Approaches for Gender Classification from Facial Images,” Mesopotamian J. Big Data, vol. 2024, pp. 185–198, 2024, doi: 10.58496/MJBD/2024/013.

T. J. Mohammed et al., “A Systematic Review of Artificial Intelligence in Orthopaedic Disease Detection: A Taxonomy for Analysis and Trustworthiness Evaluation,” Int. J. Comput. Intell. Syst., vol. 17, no. 1, p. 303, 2024, doi: 10.1007/s44196-024-00718-y.

A. J. Sietsma, “The First Generation of Machine Learning Applications for Tracking Climate Change Adaptation.” University of Leeds, 2023.

S. Arya, “Harnessing Big Data and Machine Learning for Climate Change Predictions and Mitigation,” in Maintaining a Sustainable World in the Nexus of Environmental Science and AI, IGI Global, 2024, pp. 383–408.

T. Li, A. Li, and Y. Song, “Development and Utilization of Renewable Energy Based on Carbon Emission Reduction—Evaluation of Multiple MCDM Methods,” Sustainability, vol. 13, no. 17, 2021, doi: 10.3390/su13179822.

A. Baklanov et al., “Integrated urban services: Experience from four cities on different continents,” Urban Clim., vol. 32, p. 100610, 2020.

M. SaberiKamarposhti, N. K. Why, M. Yadollahi, H. Kamyab, J. Cheng, and M. Khorami, “Cultivating a sustainable future in the artificial intelligence era: A comprehensive assessment of greenhouse gas emissions and removals in agriculture,” Environ. Res., p. 118528, 2024.

S. E. Bibri, J. Krogstie, A. Kaboli, and A. Alahi, “Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review,” Environ. Sci. Ecotechnology, vol. 19, p. 100330, 2024.

A. Hamrani, A. Akbarzadeh, and C. A. Madramootoo, “Machine learning for predicting greenhouse gas emissions from agricultural soils,” Sci. Total Environ., vol. 741, p. 140338, Nov. 2020, doi: 10.1016/j.scitotenv.2020.140338.

M. Emami Javanmard and S. F. Ghaderi, “A Hybrid Model with Applying Machine Learning Algorithms and Optimization Model to Forecast Greenhouse Gas Emissions with Energy Market Data,” Sustain. Cities Soc., vol. 82, p. 103886, Jul. 2022, doi: 10.1016/j.scs.2022.103886.

I. Ulku and E. E. Ulku, “Forecasting Greenhouse Gas Emissions Based on Different Machine Learning Algorithms,” 2022, pp. 109–116. doi: 10.1007/978-3-031-09176-6_13.

X. Li, A. Ren, and Q. Li, “Exploring Patterns of Transportation-Related CO2 Emissions Using Machine Learning Methods,” Sustainability, vol. 14, no. 8, p. 4588, Apr. 2022, doi: 10.3390/su14084588.

S. Giannelos, F. Bellizio, G. Strbac, and T. Zhang, “Machine learning approaches for predictions of CO2 emissions in the building sector,” Electr. Power Syst. Res., vol. 235, p. 110735, Oct. 2024, doi: 10.1016/j.epsr.2024.110735.

“CO2 and Greenhouse Gas Emissions by Region.” https://www.kaggle.com/datasets/shahriarkabir/co2-and-greenhouse-gas-emissions-by-region/ (accessed Dec. 27, 2024).

F. K. H. Mihna, M. A. Habeeb, Y. L. Khaleel, Y. H. Ali, and L. A. E. Al-saeedi, “Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence,” Mesopotamian J. CyberSecurity, vol. 2024, pp. 4–16, Mar. 2024, doi: 10.58496/MJCS/2024/002.

M. A. Habeeb, Y. L. Khaleel, and A. S. Albahri, “Toward Smart Bicycle Safety: Leveraging Machine Learning Models and Optimal Lighting Solutions,” in Proceedings of the Third International Conference on Innovations in Computing Research (ICR’24), K. Daimi and A. Al Sadoon, Eds., Cham: Springer Nature Switzerland, 2024, pp. 120–131.

Y. L. Khaleel, M. A. Habeeb, and G. G. Shayea, “Integrating Image Data Fusion and ResNet Method for Accurate Fish Freshness Classification,” Iraqi J. Comput. Sci. Math., vol. 5, no. 4, p. 21, 2024.

R. D. Ismail, Q. A. Hameed, M. A. Habeeb, Y. L. Khaleel, and F. N. Ameen, “Deep Learning Model for Hand Movement Rehabilitation,” Mesopotamian J. Comput. Sci., vol. 2024, no. SE-Articles, pp. 134–149, Oct. 2024, doi: 10.58496/MJCSC/2024/011.

F. M. Ottaviani and A. De Marco, “Multiple Linear Regression Model for Improved Project Cost Forecasting,” Procedia Comput. Sci., vol. 196, pp. 808–815, 2022, doi: 10.1016/j.procs.2021.12.079.

A. A. Mahamat et al., “Decision Tree Regression vs. Gradient Boosting Regressor Models for the Prediction of Hygroscopic Properties of Borassus Fruit Fiber,” Appl. Sci., vol. 14, no. 17, p. 7540, Aug. 2024, doi: 10.3390/app14177540.

H. M. Abdulfattah, K. Y. Layth, and A. A. Raheem, “Enhancing Security and Performance in Vehicular Adhoc Networks: A Machine Learning Approach to Combat Adversarial Attacks,” Mesopotamian J. Comput. Sci., vol. 2024, pp. 122–133, 2024, doi: 10.58496/MJCSC/2024/010.

Y. O. Ouma et al., “Land-Use Change Prediction in Dam Catchment Using Logistic Regression-CA, ANN-CA and Random Forest Regression and Implications for Sustainable Land–Water Nexus,” Sustainability, vol. 16, no. 4, p. 1699, Feb. 2024, doi: 10.3390/su16041699.

M. S. Ahmad, S. M. Adnan, S. Zaidi, and P. Bhargava, “A novel support vector regression (SVR) model for the prediction of splice strength of the unconfined beam specimens,” Constr. Build. Mater., vol. 248, p. 118475, Jul. 2020, doi: 10.1016/j.conbuildmat.2020.118475.

G. Lin, A. Lin, and D. Gu, “Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient,” Inf. Sci. (Ny)., vol. 608, pp. 517–531, Aug. 2022, doi: 10.1016/j.ins.2022.06.090.

Zhagparov, Z. Buribayev, S. Joldasbayev, A. Yerkosova, and M. Zhassuzak, “Building a System for Predicting the Yield of Grain Crops Based On Machine Learning Using the XGBRegressor Algorithm,” in 2021 IEEE International Conference on Smart Information Systems and Technologies (SIST), IEEE, Apr. 2021, pp. 1–5. doi: 10.1109/SIST50301.2021.9465938.

D. A. Otchere, T. O. A. Ganat, J. O. Ojero, B. N. Tackie-Otoo, and M. Y. Taki, “Application of gradient boosting regression model for the evaluation of feature selection techniques in improving reservoir characterisation predictions,” J. Pet. Sci. Eng., vol. 208, p. 109244, Jan. 2022, doi: 10.1016/j.petrol.2021.109244.

L. A. Geraldo-Campos, J. J. Soria, and T. Pando-Ezcurra, “Machine Learning for Credit Risk in the Reactive Peru Program: A Comparison of the Lasso and Ridge Regression Models,” Economies, vol. 10, no. 8, p. 188, Jul. 2022, doi: 10.3390/economies10080188.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, p. e623, Jul. 2021, doi: 10.7717/peerj-cs.623.

Similar Articles

You may also start an advanced similarity search for this article.