Deep Learning in Genomic Sequencing: Advanced Algorithms for HIV/AIDS Strain Prediction and Drug Resistance Analysis

Main Article Content

Asma Khazaal Abdulsahib
Geehan Sabah Hassan
Faris M. Alwan
Israa Ibraheem Al_Barazanchi

Abstract

Genome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and identifying variants. A patient's HIV strain can be classified as susceptible or resistant to 17 different treatments. The FGD-MCNN transforms DNA genotype and HIV data into mathematical metrics, providing valuable insights into treatment-resistant HIV strains through pooling analysis. With remarkable accuracy, the FGD-MCNN deep learning system predicts HIV medication resistance using behavioral and genome-wide data from the HIV database. DNA patterns can be classified as resistant or susceptible by 17 antiretroviral drugs, providing valuable information for treatment planning and medical judgment. The model's parameter values illustrate the connections between neurons and the complex webs observed in the data have been examined. This study improves treatment effectiveness and expands the knowledge of HIV/AIDS.

Article Details

Section

Articles

Deprecated: json_decode(): Passing null to parameter #1 ($json) of type string is deprecated in /home/u273879158/domains/mesopotamian.press/public_html/journals/plugins/generic/citations/CitationsPlugin.php on line 68

How to Cite

Deep Learning in Genomic Sequencing: Advanced Algorithms for HIV/AIDS Strain Prediction and Drug Resistance Analysis (A. K. . Abdulsahib, G. S. . Hassan, F. M. . Alwan, & I. I. Al_Barazanchi , Trans.). (2025). Applied Data Science and Analysis, 2025, 178-186. https://doi.org/10.58496/ADSA/2025/015

References

[1] C. Baucom, J. Bate, S. Ochoa, I. Santos, A. Sergios, L. Lorentzen, and K. Reilly, "The Epidemiology of the AIDS Pandemic: Historical, Cultural, Political, Societal Perspectives and Knowledge of HIV," Journal of Student Research, vol. 8, no. 2, 2019. doi: 10.47611/jsr.v8i2.781.

[2] J. Rodríguez-Muñoz and S. Moreno, "Strategies for the cure of HIV infection," Enfermedades Infecciosas y Microbiologia Clinica (English ed.), vol. 37, no. 4, pp. 265-273, 2019. doi: 10.1016/j.eimce.2019.02.001.

[3] M. A. Cabecinha and J. Saunders, "HIV prevention strategies," Medicine, vol. 50, no. 4, pp. 228-233, 2022. doi: 10.1016/j.mpmed.2022.01.007.

[4] J. O. Mugabe et al., "Securing Africa’s health sovereignty: Why investing in science and innovation matters," Open Res Africa, vol. 3, p. 52, 2020.

[5] A. S. Fauci, R. R. Redfield, G. Sigounas, M. D. Weahkee, and B. P. Giroir, "Ending the HIV epidemic: a plan for the United States," JAMA, vol. 321, no. 9, pp. 844-845, 2019. doi: 10.1001/jama.2019.1343.

[6] J. Weber, I. Volkova, M. K. Sahoo, P. L. Tzou, R. W. Shafer, and B. A. Pinsky, "Prospective evaluation of the Vela diagnostics next-generation sequencing platform for HIV-1 genotypic resistance testing," The Journal of Molecular Diagnostics, vol. 21, no. 6, pp. 961-970, 2019. doi: 10.1016/j.jmoldx.2019.06.003.

[7] X. Tang et al., "A membrane-anchored short-peptide fusion inhibitor fully protects target cells from infections of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus," Journal of Virology, vol. 93, no. 22, pp. 10-1128, 2019. doi: 10.1128/jvi.01177-19.

[8] B. M. Nastri et al., "HIV and drug-resistant subtypes," Microorganisms, vol. 11, no. 1, p. 221, 2023. doi: 10.3390/microorganisms11010221.

[9] K. Pikalyova et al., "HIV-1 drug resistance profiling using amino acid sequence space cartography," Bioinformatics, vol. 38, no. 8, pp. 2307-2314, 2022. doi: 10.1093/bioinformatics/btac090.

[10] S. He, L. G. Leanse, and Y. Feng, "Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases," Advanced Drug Delivery Reviews, vol. 178, p. 113922, 2021. doi: 10.1016/j.addr.2021.113922.

[11] H. Tunc et al., "Prediction of HIV-1 protease resistance using genotypic, phenotypic, and molecular information with artificial neural networks," PeerJ, vol. 11, p. e14987, 2023.

[12] O. Tarasova, N. Biziukova, D. Filimonov, and V. Poroikov, "A computational approach for the prediction of HIV resistance based on amino acid and nucleotide descriptors," Molecules, vol. 23, no. 11, p. 2751, 2018. doi: 10.3390/molecules23112751.

[13] O. Tarasova and V. Poroikov, "HIV resistance prediction to reverse transcriptase inhibitors: focus on open data," Molecules, vol. 23, no. 4, p. 956, 2018. doi: 10.3390/molecules23040956.

[14] L. Koumakis, "Deep learning models in genomics; are we there yet?," Computational and Structural Biotechnology Journal, vol. 18, pp. 1466-1473, 2020. doi: 10.1016/j.csbj.2020.06.017.

[15] L. Blassel et al., "Drug resistance mutations in HIV: new bioinformatics approaches and challenges," Current Opinion in Virology, vol. 51, pp. 56-64, 2021. doi: 10.1016/j.coviro.2021.09.009.

[16] A. Dubey, "Applications of machine learning: cutting edge technology in HIV diagnosis, treatment and further research," Computational Molecular Biology, vol. 6, 2019. doi: 10.5376/cmb.2016.06.0003.

[17] R. Al-Amri, R. K. Murugesan, E. M. Alshari, and H. S. Alhadawi, “Toward a Full Exploitation of IoT in Smart Cities: A Review of IoT Anomaly Detection Techniques,” 2022, pp. 193–214.

[18] S. Q. Salih and A. R. A. Alsewari, “A new algorithm for normal and large-scale optimization problems: Nomadic People Optimizer,” Neural Comput. Appl., vol. 32, no. 14, pp. 10359–10386, 2020, doi: 10.1007/s00521-019-04575-1.

[19] R. Al-Amri, R. K. Murugesan, E. M. Alshari, and H. S. Alhadawi, “Toward a Full Exploitation of IoT in Smart Cities: A Review of IoT Anomaly Detection Techniques,” 2022, pp. 193–214.

[20] S. Q. Salih and A. R. A. Alsewari, “A new algorithm for normal and large-scale optimization problems: Nomadic People Optimizer,” Neural Comput. Appl., vol. 32, no. 14, pp. 10359–10386, 2020, doi: 10.1007/s00521-019-04575-1.

[21] Y. K. Salih, O. H. See, S. Yussof, A. Iqbal, and S. Q. Mohammad Salih, “A proactive fuzzy-guided link labeling algorithm based on MIH framework in heterogeneous wireless networks,” Wirel. Pers. Commun., vol. 75, no. 4, pp. 2495–2511, 2014, doi: 10.1007/s11277-013-1479-z.

[22] Y. K. Salih, O. H. See, S. Yussof, A. Iqbal, and S. Q. Mohammad Salih, “A proactive fuzzy-guided link labeling algorithm based on MIH framework in heterogeneous wireless networks,” Wirel. Pers. Commun., vol. 75, no. 4, pp. 2495–2511, 2014, doi: 10.1007/s11277-013-1479-z.

[23] A. T. Abdulrasool, S. S. Mohammed, N. R. Kadhim, and W. A. Mohammad Hussain, “Sustainable Materials Used as Lightweight Aggregate :(An Overview),” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Jan. 2022. doi: 10.1088/1755-1315/961/1/012027.

[24] I. I. al Barazanchi et al., “Optimizing the Clinical Decision Support System (CDSS) by Using Recurrent Neural Network (RNN) Language Models for Real-Time Medical Query Processing,” Computers, Materials and Continua, vol. 81, no. 3, pp. 4787–4832, 2024, doi: 10.32604/cmc.2024.055079.

[25] K. J. Moulood, M. S. G. Mansoor, I. I. al Barazanchi, and J. F. Tawfeq, “Improving security in the 5G-based medical Internet of Things to improve the quality of patient services,” Iraqi Journal for Computer Science and Mathematics, vol. 5, no. 3, pp. 305–313, 2024, doi: 10.52866/ijcsm.2024.05.03.017.

[26] T. Hai et al., “Optimizing ternary hybrid nanofluids using neural networks, gene expression programming, and multi-objective particle swarm optimization: a computational intelligence strategy,” Scientific Reports, vol. 15, no. 1, p. 1986, Jan. 2025, doi: 10.1038/s41598-025-85236-3.

[27] H. A. Jaffar, A. A. Ismaeel, and A. L. Shuraiji, “Optimizing and developing a new model for SVE through simulation and experimentation to improve PV,” Renewable Energy, vol. 247, p. 123010, Jul. 2025, doi: 10.1016/j.renene.2025.123010.

Similar Articles

You may also start an advanced similarity search for this article.